タグ「範囲」の検索結果

86ページ目:全1424問中851問~860問を表示)
千葉大学 国立 千葉大学 2012年 第5問
放物線$y=x^2$上の点$(a,\ a^2)$における接線を$\ell_a$とする.

(1)直線$\ell_a$が不等式
\[ y> -x^2+2x-5 \]
の表す領域に含まれるような$a$の範囲を求めよ.
(2)$a$が(1)で求めた範囲を動くとき,直線$\ell_a$が通らない点$(x,\ y)$全体の領域$D$を図示せよ.
(3)連立不等式
\[ \left\{
\begin{array}{l}
(y-x^2)(y+x^2-2x+5) \leqq 0 \\
y(y+5) \leqq 0
\end{array}
\right. \]
の表す領域を$E$とする.$D$と$E$の共通部分の面積を求めよ.
東北大学 国立 東北大学 2012年 第4問
平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$が
\[ |\overrightarrow{a}| = |\overrightarrow{b}| =1,\quad \overrightarrow{a}\cdot \overrightarrow{b}=-\frac{1}{2} \]
を満たすとする.ただし,記号$\overrightarrow{a} \cdot \overrightarrow{b}$はベクトル$\overrightarrow{a}$と$\overrightarrow{b}$の内積を表す.以下の問いに答えよ.

(1)実数$p,\ q$に対して,$\overrightarrow{c} = p\overrightarrow{a}+q\overrightarrow{b}$とおく.このとき,次の条件
\[ |\overrightarrow{c}|=1,\quad \overrightarrow{a}\cdot \overrightarrow{c}=0,\quad p>0 \]
を満たす実数$p,\ q$を求めよ.
(2)平面上のベクトル$\overrightarrow{x}$が
\[ -1 \leqq \overrightarrow{a} \cdot \overrightarrow{x} \leqq 1 , \quad 1 \leqq \overrightarrow{b} \cdot \overrightarrow{x} \leqq 2 \]
を満たすとき,$|\overrightarrow{x}|$のとりうる値の範囲を求めよ.
横浜国立大学 国立 横浜国立大学 2012年 第1問
$xy$平面上に$n$個の点P$_k(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots,\ n)$がある.
\[ a=\sum_{k=1}^n x_k^2, \quad b=\sum_{k=1}^n y_k^2, \quad c= \sum_{k=1}^n x_ky_k \]
とおく.さらに,P$_k$と直線$\ell: x\cos \theta + y\sin \theta = 0$の距離を$d_k$とし,
\[ L = \sum_{k=1}^n d_k^2 \]
とおく.次の問いに答えよ.

(1)$L$を$a,\ b,\ c,\ \theta$を用いて表せ.
(2)$\theta$が$0 \leqq \theta < \pi$の範囲を動くとき,$L$の最大値と最小値を$a,\ b,\ c$を用いて表せ.
(3)$a \neq b$または$c \neq 0$のとき,$L$を最大にする$\ell$を$\ell_1$,最小にする$\ell$を$\ell_2$とする.$\ell_1$と$\ell_2$は直交することを示せ.
静岡大学 国立 静岡大学 2012年 第4問
$a_1$を$\displaystyle \frac{\pi}{12} < a_1 < \frac{\pi}{4}$を満たす数とし,$\{a_n\}$を
\[ a_{n+1} = 1-\sin \;a_n \ (n=1,\ 2,\ 3,\ \cdots) \]
で定められる数列とする.このとき,次の問いに答えよ.

(1)直線$y=1-x$と曲線$y=\sin x$は,$\displaystyle \frac{\pi}{12} < x < \frac{\pi}{4}$の範囲でただ1つの交点をもつことを示せ.
(2)$n$を自然数とするとき,不等式$\displaystyle \frac{\pi}{12} < a_n < \frac{\pi}{4}$を示せ.
(3)(1)の交点の$x$座標を$\alpha$とするとき,$\displaystyle \lim_{n \to \infty}a_n=\alpha$が成り立つことを示せ.
金沢大学 国立 金沢大学 2012年 第2問
曲線$C : y = |x^2-2x|$と傾きが$m$の直線$\ell: y = mx$ついて,次の問いに答えよ.

(1)曲線$y=-x^2 +2x$と$\ell$が接する$m$の値を求めよ.
(2)$C$と$\ell$が原点以外の相異なる2点で交わるような$m$の範囲を求めよ.また,そのときの2つの交点の座標を$m$を用いて表せ.
(3)$m$は(2)で求めた範囲にあるとする.$x \geqq 2,\ y \leqq mx,\ y \geqq |x^2-2x|$で定まる部分の面積$S$を$m$を用いて表せ.
東京工業大学 国立 東京工業大学 2012年 第3問
$3$次関数$y = x^3-3x^2+2x$のグラフを$C$,直線$y = ax$を$\ell$とする.

(1)$C$と$\ell$が原点以外の共有点をもつような実数$a$の範囲を求めよ.
(2)$a$が(1)で求めた範囲内にあるとき,$C$と$\ell$によって囲まれる部分の面積を$S(a)$とする.$S(a)$が最小となる$a$の値を求めよ.
信州大学 国立 信州大学 2012年 第4問
実数$a$は$a>-1$とする.関数$f(x)=3x^3-7x^2+5x-1$に対し,
\[ -1<c<a,\ \frac{f(a)-f(-1)}{a+1}=f^{\, \prime}(c) \]
となる$c$がちょうど2つ存在するような$a$の値の範囲を求めよ.
信州大学 国立 信州大学 2012年 第3問
実数$a$に対して,関数$\displaystyle f_a(x)=-3x^2+\left(\frac{5}{4}-x \right)\int_0^a f_a(t) \, dt$を満たすとする.

(1)$\displaystyle k=\int_0^a f_a(t) \, dt$とおく.このとき,$k$を$a$の分数式で表せ.
(2)どのような実数$a$に対しても,$2$次方程式$f_a(x)=4x-20$が異なる$2$つの実数解をもつことを示せ.
(3)(2)の方程式の解がともに正であるような$a$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2012年 第3問
$\displaystyle f(\theta)=4\left(\sin^3 \frac{\theta}{2}+\cos^3 \frac{\theta}{2} \right)+6\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2} \right)(\sin \theta -2)-\sqrt{6}(\sin \theta +1)$とおく.ただし,$\theta$の範囲は$\displaystyle 0 \leqq \theta \leqq \frac{3}{2}\pi$とする.以下の問いに答えよ.

(1)$\displaystyle x=\sin \frac{\theta}{2}+\cos \frac{\theta}{2}$とおくとき,$f(\theta)$を$x$のみの式で表せ.
(2)$f(\theta)$の最小値とそのときの$\theta$の値を求めよ.
滋賀大学 国立 滋賀大学 2012年 第2問
点A$\displaystyle \left( a,\ \frac{1}{2} \right)$を不等式$y < 4x-4x^2$の表す領域内の点とし,点Aを通り傾き$m$の直線を$\ell$とする.直線$\ell$と放物線$y=4x-4x^2$で囲まれた部分の面積を$S$とするとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$m$を変化させたとき,$S$の最小値を$g(a)$とする.$g(a)$を与える$m$を$a$を用いて表せ.
(3)$g(a)$を最大にする$a$の値を求めよ.また,そのときの直線$\ell$の方程式を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。