タグ「範囲」の検索結果

80ページ目:全1424問中791問~800問を表示)
近畿大学 私立 近畿大学 2013年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$1:2$の比に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,$\mathrm{R}$を辺$\mathrm{OC}$上の点とするとき,

(1)線分$\mathrm{PQ}$の長さを求めよ.
(2)三角形$\mathrm{PQC}$の面積を求めよ.
(3)$\mathrm{R}$が辺$\mathrm{OC}$上を動くとき,三角形$\mathrm{PQR}$の面積の最小値を求めよ.
(4)頂点$\mathrm{O}$から三角形$\mathrm{PQR}$を含む平面に垂線$\mathrm{OH}$を引く.点$\mathrm{H}$が三角形$\mathrm{PQR}$の内部にあるとき,$\mathrm{OR}=r$の取りうる値の範囲を求めよ.ただし三角形の内部とはその周を含まないものとする.
近畿大学 私立 近畿大学 2013年 第3問
定義域を$0 \leqq x \leqq 2\pi$とする関数$f(x)=|\sin 2x-2 \sin x-2 \cos x+1|$がある.$t=\sin x+\cos x$とおき,$f(x)$を$t$で表した関数を$g(t)$とおく.

(1)関数$g(t)$を求めよ.
(2)$t$が取りうる値の範囲を求めよ.
(3)$f(x)$が取りうる値の範囲を求めよ.
(4)方程式$f(x)=k$の異なる実数解の個数$l$を$k$の値で場合分けして求めよ.
大阪薬科大学 私立 大阪薬科大学 2013年 第2問
次の問いに答えなさい.

実数$t$に対し,一辺の長さが$1$の正三角形$\mathrm{OAB}$の辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{AB}$を$2t:(1-2t)$に内分する点を$\mathrm{Q}$,辺$\mathrm{BO}$を$3t:(1-3t)$に内分する点を$\mathrm{R}$とする.ただし,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は正三角形$\mathrm{OAB}$の辺上にあり,いずれの頂点とも一致しないものとする.

(1)$t$がとる値の範囲は$[ ]$である.
(2)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.

(i) $\overrightarrow{a} \cdot \overrightarrow{b}=[ ]$である.
(ii) $\overrightarrow{\mathrm{PQ}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を使って表すと,$\overrightarrow{\mathrm{PQ}}=[ ]$となる.
(iii) $\displaystyle \angle \mathrm{QPR}=\frac{\pi}{2}$となるのは,$t=[ ]$のときである.

(3)三角形$\mathrm{PQR}$の面積を$S$とする.$S$を$t$を使って表し,また$S$の最小値を求めなさい.
大阪薬科大学 私立 大阪薬科大学 2013年 第3問
次の問いに答えなさい.

$xy$座標平面上に$3$点$\mathrm{P}(-\sqrt{3},\ 0)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(\sqrt{3},\ 0)$がある.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線を$C$とし,また同じ$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円を$D$とする.

(1)$C$の方程式を$y=f(x)$とするとき,$f(x)=[ ]$である.
(2)$D$は,中心の座標が$[ ]$,半径が$[ ]$である.
(3)$D$の内部で$y \geqq f(x)$を満たす部分の面積は$[ ]$である.
(4)$C$の接線$\ell$が$D$の接線でもあるとき,$\ell$の方程式を求めなさい.
(5)$C$を$y$軸方向に$p$だけ平行移動した曲線が$D$と共通点をもつとき,$p$は$[ ]$の範囲にある.
近畿大学 私立 近畿大学 2013年 第3問
$\mathrm{O}$を原点とする座標平面において,曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と直線$\ell:y=-2x+a$を考える.ただし,$a$は定数とする.

(1)$C$と$\ell$が$2$個の共有点をもつとき,$a$のとりうる値の範囲は,$a>[ア] \sqrt{[イ]}$である.
(2)$(1)$の条件のもとで,$C$と$\ell$の共有点を$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とする.

(i) $\mathrm{P}$の$x$座標を$\alpha$,$\mathrm{Q}$の$x$座標を$\beta$とすると
\[ \alpha+\beta=\frac{a}{[ウ]},\quad \beta-\alpha=\frac{\sqrt{a^2-[エ]}}{[オ]},\quad \alpha\beta=\frac{[カ]}{[キ]} \]
である.
(ii) $\triangle \mathrm{OPQ}$の面積は
\[ \frac{a \sqrt{a^2-[ク]}}{[ケ]} \]
である.
(iii) 線分$\mathrm{PQ}$の長さが$5$であるとき,$a=[コ] \sqrt{[サ]}$であり,このとき$C$と$\ell$で囲まれた部分の面積は
\[ \sqrt{[シス]}+\log ([セ]-\sqrt{[ソタ]}) \]
である.
桜美林大学 私立 桜美林大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての不等式$\displaystyle \frac{2x-a}{3}<\frac{x-3}{2}$をみたす最大の整数が$3$となるような実数の定数$a$がとり得る値の範囲を次の$①$~$⑤$から選ぶと$[ア]$である.
\[ ① 6<a \quad ② 6 \leqq a \quad ③ 6<a<\frac{13}{2} \quad ④ 6 \leqq a<\frac{13}{2} \quad ⑤ 6<a \leqq \frac{13}{2} \]
(2)$1000$以下の自然数で,$3$または$5$で割りきれる数は$[イ][ウ][エ]$個であり,そのうち偶数でないものは$[オ][カ][キ]$個ある.
(3)$2$つの方程式$x^2-2ax+2a^2+a-2=0$と$x^2+(2a+2)x-a+1=0$がともに実数解をもつような定数$a$の値の範囲は$[ク] \leqq a \leqq [ケ]$である.
(4)$0 \leqq x \leqq \pi$とする.関数$y=4 \sin x+3 \cos x$の最小値は$[コ]$であり,$y$の最大値を与える$x$の値を$\theta$とすると,$\displaystyle \sin 2\theta=\frac{[サ][シ]}{[ス][セ]}$である.
(5)$x$の関数$f(x)$が$\displaystyle f(x)=\int_0^1 xtf(t) \, dt+2$を満たすとき,$\displaystyle f(x)=\frac{[ソ]}{[タ]}x+[チ]$である.
産業医科大学 私立 産業医科大学 2013年 第2問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において定義された$2$つの曲線
\[ y=a \sin 2x,\quad y=\sin 4x \]
について次の問いに答えなさい.ただし,$a$は定数である.

(1)$2$つの曲線が$\displaystyle 0<x<\frac{\pi}{2}$で交点を持つように$a$の値の範囲を定めなさい.
(2)$a$が$(1)$で定められた範囲にあるとき,$2$つの曲線によって囲まれた図形は$(1)$の交点を境にして$2$つの部分に分けられる.それらのうち原点を含む部分の面積を$S_1$,原点を含まない部分の面積を$S_2$とする.$S_1:S_2=4:1$となるように$a$の値を定めなさい.
広島工業大学 私立 広島工業大学 2013年 第7問
$2$次不等式$x^2-2ax \leqq x$において,定数$a$は$\displaystyle a<-\frac{1}{2}$を満たすとする.次の問いに答えよ.

(1)この$2$次不等式を満たす実数$x$の値の範囲を求めよ.
(2)$(1)$で求めた$x$の範囲において,関数$f(x)=x^2-4ax$の最小値が$-11$であるとき,定数$a$の値を求めよ.
成城大学 私立 成城大学 2013年 第1問
$x$の方程式$kx^2+4(k-1)x+k+5=0$が次の条件を満たすとき,実数の定数$k$の値の範囲をそれぞれ求めよ.

(1)正の解と負の解をもつ.
(2)異なる$2$つの正の解をもつ.
東京女子大学 私立 東京女子大学 2013年 第5問
座標空間における点$\mathrm{A}(2,\ -1,\ 2)$,$\mathrm{B}(-1,\ 1,\ -1)$に対し,以下の設問に答えよ.ただし$\mathrm{O}$は原点を表す.

(1)$\cos \angle \mathrm{AOB}$を求めよ.
(2)$x \geqq 0$の範囲にある点$\mathrm{C}(x,\ y,\ z)$で,$\overrightarrow{\mathrm{OC}}$が$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方と直交し,かつ$|\overrightarrow{\mathrm{CA}}|=5$となるものを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。