タグ「範囲」の検索結果

79ページ目:全1424問中781問~790問を表示)
京都女子大学 私立 京都女子大学 2013年 第2問
次の問に答えよ.

(1)不等式$\displaystyle |x|<\frac{x+4}{3}$を解け.
(2)$a$を定数とする.$x$についての$2$次不等式$x^2-(a+3)x-(2a^2-3a-2)<0$を解け.
(3)$(2)$の不等式の解が$(1)$の不等式の解に含まれるように,$a$の値の範囲を求めよ.
星薬科大学 私立 星薬科大学 2013年 第1問
次の問に答えよ.

(1)連立方程式$2x+y-3=0$,$ax-y+2a-7=0$が$x>0$,$y>0$となる解をもつとき,$a$がとりえる値の範囲は$[ ]<a<[ ]$である.
(2)$x$の$2$次方程式$(k^2-1)x^2-x+1=0$が正の$2$つの解$\alpha,\ \beta$をもち,かつ$k \alpha\beta=2 \alpha-\beta$を満たすとき,$\displaystyle k=\frac{[][]}{[][]}$,$\displaystyle \alpha=\frac{[][]}{[ ]}$,$\displaystyle \beta=\frac{[][]}{[ ]}$である.
星薬科大学 私立 星薬科大学 2013年 第4問
次の問に答えよ.

(1)不等式$16 \cdot 8^{-x}-48 \cdot 4^{-x}+32 \cdot 2^{-x}<0$を満たす$x$の値の範囲は$-[ ]<x<[ ]$である.
(2)$\log_a b+\log_b c+\log_c a=\log_a b \cdot \log_b c+\log_b c \cdot \log_c a+\log_c a \cdot \log_a b=3$が成り立つとき,$\displaystyle \frac{(a+b)(b+c)(c+a)}{abc}=[ ]$である.
(3)$\log_4 (x^4+2)-2 \log_4 2x$の最小値は$\displaystyle -\frac{[ ]}{[ ]}$である.
同志社大学 私立 同志社大学 2013年 第3問
$\triangle \mathrm{OAB}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.$2$つの正の数$s,\ t$に対して,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{a}+t \overrightarrow{b}$となるように点$\mathrm{C}$を定める.また,線分$\mathrm{AC}$および線分$\mathrm{BC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とし,直線$\mathrm{OM}$および直線$\mathrm{ON}$が線分$\mathrm{AB}$と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$\overrightarrow{a} \cdot \overrightarrow{b}=5$のとき,次の問いに答えよ.

(1)線分$\mathrm{AB}$の長さ,および$\triangle \mathrm{OAB}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(4)$\triangle \mathrm{OPQ}$の面積を$S_2$とする.$S_2$を$s,\ t$を用いて表せ.
(5)$\displaystyle S_2=\frac{1}{4}S_1$となるための$s,\ t$の条件を求め,$s,\ t$がその条件をみたしながら動くとき,点$\mathrm{C}$の存在する範囲を求めよ.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)行列$A=\left( \begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array} \right)$と$B=\left( \begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array} \right) (0<\beta<\alpha<2\pi)$の積$AB$の$(1,\ 1)$成分は$\theta=\alpha-\beta$を用いて表すと$[ ]$となり,$(1,\ 2)$成分は$\theta$を用いて表すと$[ ]$となる.ここで点$\mathrm{P}_1(\sqrt{2},\ \sqrt{2})$が$AB$で表される$1$次変換によって点$\displaystyle \mathrm{P}_2 \left( \frac{\sqrt{6}-\sqrt{2}}{2},\ \frac{\sqrt{6}+\sqrt{2}}{2} \right)$に移るとすると$\theta=[ ]$となる.このとき,${(AB)}^{25}$で表される$1$次変換によって点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となり,$((AB)^{-1})^{2013}$で点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となる.
(2)関数$f(x)=(ax^2+bx)e^{-x^2}$は$\displaystyle x=\frac{1}{2}$で極大値$1$をとるとする.このとき,$a=[ ]$,$b=[ ]$であり,$f(x)>0$を満たす範囲は$0<x<[ ]$となる.この区間で関数$g(x)=\log f(x)$を考える.曲線$C:y=g(x)$の点$\displaystyle \left( 1,\ -\frac{3}{4} \right)$における接線の方程式は$y=[ ]$となり,曲線$C$と直線$y=k$が共有点をもたない$k$の値の範囲は$[ ]$となる.
同志社大学 私立 同志社大学 2013年 第2問
座標空間において$3$点$\mathrm{A}(0,\ 0,\ 4)$,$\mathrm{B}(a,\ 1,\ 2)$,$\mathrm{C}(x,\ y,\ 0)$をとる.ただし$a$は正の実数とする.次の問いに答えよ.

(1)$\mathrm{AB}=\mathrm{BC}$となる条件を$a,\ x,\ y$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{BC}}$が直交する条件を$a,\ x,\ y$を用いて表せ.
(3)$\mathrm{AB}=\mathrm{BC}$かつ$\angle \mathrm{ABC}$が直角となる点$\mathrm{C}$が存在する$a$の値の範囲を求めよ.
安田女子大学 私立 安田女子大学 2013年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+ax+b$が$2$点$(-2,\ 23)$,$(3,\ -2)$を通るとき,定数$a,\ b$の値を求めよ.
(2)$(1)$の放物線と直線$y=-x+3$の$2$つの交点の座標を求めよ.
(3)$(2)$の$2$つの交点の$x$座標をそれぞれ$m,\ n$とする.ただし,$m<n$とする.放物線$y=x^2-6x-k^2+4k+5$が$m \leqq x \leqq n$の区間において,常に$y<0$の部分にあるような定数$k$の値の範囲を求めよ.
安田女子大学 私立 安田女子大学 2013年 第2問
定価が$1$個$60$円の商品がある.この商品を定価と同じ価格で販売したところ,$1$日の売り上げ個数は$1500$個であった.このとき,次の問いに答えよ.

(1)この商品を定価以上の価格で販売したところ,$1$円値上げするごとに$1$日の売り上げ個数が$15$個の割合で減少した.定価からの値上げ額を$x$円,$1$日の売り上げを$y$円として,$y$を$x$の関数で表せ.ただし,$x \geqq 0$,$y \geqq 0$とする.
(2)$(1)$の場合において,この商品の価格がいくらのとき,$1$日の売り上げが最高になるか求めよ.また,そのときの売り上げがいくらになるか求めよ.
(3)この商品を定価以下の価格で販売したところ,$1$円値下げするごとに$1$日の売り上げ個数が$50$個の割合で増えた.このとき,$(2)$で求めた売り上げの最高額よりも$1$日の売り上げが高くなるような価格の範囲を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第2問
負の実数$a,\ b$は,$u$についての$2$次方程式$u^2-su+t=0$の解で,$a^3+b^3-2ab=-4$を満たしている.このとき,設問に答えなさい.

(1)$a+b,\ ab$および$a^3+b^3-2ab$を$s,\ t$を用いて表すと,
\[ a+b=[$1$],\quad ab=[$2$],\quad a^3+b^3-2ab=[$3$] \]
となる.
(2)以下の$s,\ t$に対する記述(イ),(ロ),(ハ)のうち正しいものを選び,その記号を解答欄に記入しなさい.

\mon[(イ)] $s,\ t$は$s>0$,$t>0$,$s^2-4t \geqq 0$を満たしている.
\mon[(ロ)] $s,\ t$は$s<0$,$t>0$,$s^2 \geqq 4t$を満たしている.
\mon[(ハ)] $s,\ t$は$s<0$,$t>0$,$s^2<4t$を満たしている.

(3)$a+b$のとりうる値の範囲を求めなさい.
杏林大学 私立 杏林大学 2013年 第1問
座標平面上の点$(x,\ y)$に対し,
\[ y=2 \sqrt{-x^2+4x-3}+1 \cdots\cdots① \]
が成立している.

(1)$①$の定義域は$[ア] \leqq x \leqq [イ]$,値域は$[ウ] \leqq y \leqq [エ]$である.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を$([オ],\ [カ] \pm \sqrt{[キ]})$にとると,$①$のグラフ上の任意の点$\mathrm{P}$に対し,常に$\mathrm{PA}+\mathrm{PB}=[ク]$が成り立つ.
(3)直線$y=x+k$が$①$のグラフと共有点を持つような定数$k$の範囲は
\[ [ケコ] \leqq k \leqq [サシ]+\sqrt{[ス]} \]
である.
(4)不等式$x-1 \leqq 2 \sqrt{-x^2+4x-3}+1$の解は
\[ [セ] \leqq x \leqq [ソ]+\frac{[タ]}{[チ]} \sqrt{[ツ]} \]
である.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。