タグ「範囲」の検索結果

76ページ目:全1424問中751問~760問を表示)
学習院大学 私立 学習院大学 2013年 第4問
次の問いに答えよ.

(1)$x>0$のとき,$1+2 \sin x<x+e^x$が成り立つことを示せ.
(2)$x \geqq 0$の範囲にあって,$2$つの曲線$y=1+2 \sin x,\ y=x+e^x$と直線$x=\pi$とで囲まれる領域を$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
学習院大学 私立 学習院大学 2013年 第3問
曲線$y=x^3-(3a+2)x^2-3a^2-4a+4$が放物線$y=x^2$と相異なる$3$点で交わるための実数$a$の値の範囲を求めよ.
学習院大学 私立 学習院大学 2013年 第1問
不等式
\[ \frac{x^2-1}{x} \leqq 1 \]
を満たす実数$x$の範囲を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第1問
次の$[ ]$にあてはまる適切な数値を記入せよ.

(1)数直線上を動く点$\mathrm{P}$が原点の位置にある.$2$個のさいころを同時に投げる試行を$\mathrm{T}$とし,試行$\mathrm{T}$の結果によって,$\mathrm{P}$は次の規則で動く.
(規則)$2$個のさいころの出た目の積が偶数ならば$+2$だけ移動し,奇数ならば$+1$だけ移動する.
試行$\mathrm{T}$を$n$回繰り返し行ったときの$\mathrm{P}$の座標を$x_n$とすると,$x_1=2$となる確率は$[ア]$であり,$x_3=3$かつ$x_4=5$となる確率は$[イ]$である.また,$\mathrm{P}$が座標$4$以上の点に初めて到達するまで試行$\mathrm{T}$を繰り返し行うとき,試行回数の期待値は$[ウ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=|2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=1$をみたしている.このとき,$|\overrightarrow{\mathrm{OB}}|=[エ]$である.また,実数$s,\ t$が条件$1 \leqq s+3t \leqq 3$,$s \geqq 0$,$t \geqq 0$をみたしながら動くとき,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$で定められた点$\mathrm{P}$の存在する範囲の面積は$[オ]$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第2問
$xy$平面上に$2$曲線
\[ C_1:y=2x \sqrt{1-x^2},\quad C_2:y=\sqrt{1-x^2} \]
がある.$C_1$,$C_2$上に$2$点$\mathrm{P}_1(t,\ 2t \sqrt{1-t^2})$,$\mathrm{P}_2 (t,\ \sqrt{1-t^2}) (-1<t<1)$をとり,$\mathrm{P}_1$における$C_1$の接線$\ell_t$と,$\mathrm{P}_2$における$C_2$の接線$m_t$について考える.このとき,次の問いに答えよ.

(1)$C_1$および$C_2$の概形を同じ$xy$平面上に描け.ただし,曲線の凹凸と変曲点は調べなくてよい.また,$\mathrm{P}_1$と$\mathrm{P}_2$が一致するときの$t$の値を求めよ.
(2)$2$直線$\ell_t$と$m_t$が平行になるときの$t$がみたすべき条件を,$t$についての$2$次方程式で表し,その解$\alpha,\ \beta (\alpha<\beta)$を求めよ.
(3)$\ell_t$と$m_t$が交点をもつとき,その交点の$y$座標を$y_t$とする.

(i) $y_t$を$t$を用いて表せ.
(ii) $y_t>0$となる$t$の値の範囲を$(2)$で求めた$\alpha,\ \beta$を用いて表し,この範囲における$y_t$の最小値を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第3問
$\theta$は$0 \leqq \theta \leqq \pi$をみたす実数とする.$xyz$空間内の平面$z=0$上に$2$点
\[ \mathrm{P}_\theta (\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}_\theta (2 \cos \theta,\ 2 \sin \theta,\ 0) \]
をとり,$\theta$を$0 \leqq \theta \leqq \pi$の範囲で動かすとき,線分$\mathrm{P}_\theta \mathrm{Q}_\theta$が通過する部分を$D$とする.空間内の$z \geqq 0$の部分において,底面が$D$,$\mathrm{P}_\theta \mathrm{Q}_\theta$上の各点での高さが$\displaystyle \frac{2}{\pi}\theta$の立体$K$を考える.半球$B:x^2+y^2+z^2 \leqq 2^2$,$z \geqq 0$と$K$の共通部分を$L$とするとき,次の問いに答えよ.

(1)$B$を平面$z=t (0 \leqq t<2)$で切った切り口の円の半径を$t$を用いて表せ.
(2)$L$の体積を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第1問
関数$\displaystyle f(x)=\frac{1}{4}(x-1)^2+\frac{3}{2} (1 \leqq x \leqq 3)$を考える.

(1)関数$f(x)$の逆関数$f^{-1}(x)$は
\[ f^{-1}(x)=[ア]+\sqrt{[イ]x-[ウ]} \quad \left( \frac{[エ]}{[オ]} \leqq x \leqq \frac{[カ]}{[キ]} \right) \]
である.
(2)不等式$x<f^{-1}(x)$を満たす$x$の値の範囲は
\[ [ク]-\sqrt{[ケ]}<x \leqq \frac{[コ]}{[サ]} \]
である.
金沢工業大学 私立 金沢工業大学 2013年 第4問
関数$\displaystyle f(x)=2(\log_2 \frac{x}{2})(\log_4 \frac{x}{8})+3 (1 \leqq x \leqq 8)$について,$t=\log_2x$とおく.

(1)$t$のとり得る値の範囲は$[ス] \leqq t \leqq [セ]$である.
(2)$f(x)=t^2-[ソ]t+[タ]$である.
(3)関数$f(x)$は$t=[チ]$,すなわち$x=[ツ]$のとき最大値$[テ]$をとり,$t=[ト]$,すなわち$x=[ナ]$のとき最小値$[ニ]$をとる.
広島修道大学 私立 広島修道大学 2013年 第2問
$a,\ b,\ c$を定数とし,$-1<a<0$とする.$2$次関数$f(x)=ax^2+bx+c$のグラフが点$(2,\ -4)$と点$(0,\ 2)$を通るとする.さらに,この$2$次関数$y=f(x)$のグラフの頂点の$y$座標が$4$であるとする.このとき,次の問に答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)$f(x) \geqq -3$となる$x$の値の範囲を求めよ.
日本女子大学 私立 日本女子大学 2013年 第3問
平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$がある.$t$を$\displaystyle 0 \leqq t<\frac{1}{2}$を満たす実数とする.点$\mathrm{P}$を線分$\mathrm{OA}$上で$\mathrm{AP}=t$となるようにとる.直線$y=1$上の$\mathrm{A}$より右側の部分に点$\mathrm{S}$を$\mathrm{PO}=\mathrm{PS}$となるようにとる.$\angle \mathrm{OPS}$の二等分線が$x$軸と交わる点を$\mathrm{R}$とする.

(1)$\mathrm{AS}$の長さを$t$で表せ.
(2)$\mathrm{OR}$の長さを$t$で表せ.
(3)$t$が$\displaystyle 0 \leqq t<\frac{1}{2}$の範囲を動くとき,$\mathrm{PR}$の長さの最小値を求めよ.また,$\mathrm{PR}$の長さを最小にする$t$の値を求めよ.
(図は省略)
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。