タグ「範囲」の検索結果

67ページ目:全1424問中661問~670問を表示)
東京工業大学 国立 東京工業大学 2013年 第4問
正の整数$n$に対し,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲において$\sin 4nx \geqq \sin x$を満たす$x$の区間の長さの総和を$S_n$とする.このとき,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
東京工業大学 国立 東京工業大学 2013年 第5問
$a,\ b$を正の実数とし,円$C_1:(x-a)^2+y^2=a^2$と楕円$\displaystyle C_2:x^2+\frac{y^2}{b^2}=1$を考える.

(1)$C_1$が$C_2$に内接するための$a,\ b$の条件を求めよ.
(2)$\displaystyle b=\frac{1}{\sqrt{3}}$とし,$C_1$が$C_2$に内接しているとする.このとき,第1象限における$C_1$と$C_2$の接点の座標$(p,\ q)$を求めよ.
(3)(2)の条件のもとで,$x \geqq p$の範囲において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
東京大学 国立 東京大学 2013年 第5問
次の命題$\mathrm{P}$を証明したい.

命題$\mathrm{P}$ \quad 次の$2$条件(a),(b)をともに満たす自然数($1$以上の整数)$A$が存在する.

(a) $A$は連続する$3$つの自然数の積である.
(b) $A$を$10$進法で表したとき,$1$が連続して$99$回以上現れるところがある.


以下の問いに答えよ.

(1)$y$を自然数とする.このとき不等式
\[ x^3+3yx^2<(x+y-1)(x+y)(x+y+1)<x^3+(3y+1)x^2 \]
が成り立つような正の実数$x$の範囲を求めよ.
(2)命題$\mathrm{P}$を証明せよ.
福岡教育大学 国立 福岡教育大学 2013年 第1問
次の問いに答えよ.

(1)実数$x,\ y$が$(x-2)^2+y^2 \leqq 3$を満たすとき,$\displaystyle \frac{y-7}{x}$のとりうる値の範囲を求めよ.
(2)自然数$n$について$\displaystyle 1^3+2^3+3^3+\cdots +n^3=\left\{ \frac{1}{2}n(n+1) \right\}^2$が成り立つことを数学的帰納法によって証明せよ.
(3)$0 \leqq \theta<2\pi$のとき,関数$\displaystyle y=\sin^2 \theta-\sin \left( \theta+\frac{\pi}{2} \right)$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第4問
$f(x)=xe^{-\frac{x}{2}},\ g(x)=\sqrt{e}x$とする.次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の極値を求めよ.
(2)$k$を定数とする.$0 \leqq x \leqq 4$の範囲で$f(x)=k$の実数解の個数を求めよ.
(3)$2$つの曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第1問
次の問いに答えよ.

(1)実数$x,\ y$が$(x-2)^2+y^2 \leqq 3$を満たすとき,$\displaystyle \frac{y-7}{x}$のとりうる値の範囲を求めよ.
(2)$4$次方程式$x^4+ax^3+14x^2+16x+b=0$が$x=-2$を$2$重解としてもつとき,定数$a,\ b$の値と他の解を求めよ.
(3)$0 \leqq \theta<2\pi$のとき,関数$\displaystyle y=\sin^2 \theta-\sin \left( \theta+\frac{\pi}{2} \right)$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第4問
$f(x)=xe^{-\frac{x}{2}},\ g(x)=\sqrt{e}x$とする.次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の極値を求めよ.
(2)$k$を定数とする.$0 \leqq x \leqq 4$の範囲で$f(x)=k$の実数解の個数を求めよ.
(3)$2$つの曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第4問
三角形$\mathrm{OAB}$がある.点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$を通り辺$\mathrm{AB}$に垂直な直線と直線$\mathrm{OA}$との交点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=2$,$\overrightarrow{a} \cdot \overrightarrow{b}=p$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(3)$p \geqq 0$であるとき$\displaystyle \frac{\mathrm{ON}}{\mathrm{OA}}$の値の範囲を求めよ.
(4)点$\mathrm{N}$が線分$\mathrm{OA}$を$1:3$に内分するとき,三角形$\mathrm{OAB}$の面積$S$を求めよ.
静岡大学 国立 静岡大学 2013年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の長さを$1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=k$とする.このとき,辺$\mathrm{OB}$上の点$\mathrm{Q}$に関して,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$のとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$かつ$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$のとき,等式$9s^2-6ks+2k-1=0$が成り立つことを示せ.
(3)$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$を満たす点$\mathrm{Q}$が辺$\mathrm{OB}$上にただ$1$つ存在するような$k$の値の範囲を求めよ.ただし,点$\mathrm{Q}$が辺$\mathrm{OB}$上に存在するとは,$\mathrm{Q}$が$\mathrm{O}$または$\mathrm{B}$と一致する場合を含むものとする.
富山大学 国立 富山大学 2013年 第1問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$を満たす実数$t$に対して,$xy$平面上に$2$点$\mathrm{A}(1+2t,\ (1+t)\cos t+\sin t)$,$\mathrm{B}(-1,\ -(1+t)\cos t+\sin t)$を考える.$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_t$とする.このとき,次の問いに答えよ.

(1)直線$\ell_t$の方程式を求めよ.
(2)$k$を定数とし,直線$\ell_t$と直線$x=k$との交点を$\mathrm{P}$とする.$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}$の$y$座標のとりうる値の範囲を$k$を用いて表せ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,直線$\ell_t$の通りうる領域を図示せよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。