タグ「範囲」の検索結果

58ページ目:全1424問中571問~580問を表示)
桜美林大学 私立 桜美林大学 2014年 第3問
$a$を実数の定数とする.$C:x^2+y^2+2ax-4ay+6a^2-1=0$について,以下の問に答えなさい.

(1)$C$が円を表すとき,$a$の取りうる値の範囲は,$[ノ]<a<[ハ]$である.
(2)$C$が半径最大の円となるとき,その中心の座標は,$([ヒ],\ [フ])$である.
(3)$C$が円を表すとき,その中心の軌跡は,
直線$y=[ヘ]x$の$[ホ]<x<[マ]$の部分である.
北里大学 私立 北里大学 2014年 第1問
次の文中の$[ア]$~$[ヒ]$にあてはまる最も適切な数を答えなさい.

(1)複素数$z=-1+i$を考える.ここで,$i$は虚数単位である.このとき,
\[ z+z^2+z^3+z^4=[ア]+[イ]i \]
である.また,
\[ \sum_{n=1}^{12} z^n=[ウ][エ]+[オ][カ] i \]
となる.
(2)$0 \leqq \theta \leqq \pi$の範囲における関数$\displaystyle f(\theta)=\frac{1}{3} \sin \theta+\frac{1}{2} \cos^2 \theta-\frac{2}{3}$の最小値は$\displaystyle \frac{[キ]}{[ク]}$,最大値は$\displaystyle \frac{[ケ]}{[コ]}$である.

(3)循環小数$0. \dot{2}01 \dot{4}$を分数で表すと,
\[ 0. \dot{2}01 \dot{4}=\frac{\kakkofour{サ}{シ}{ス}{セ}}{\kakkofour{ソ}{タ}{チ}{ツ}} \]
となる.
(4)平面上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とすると,$|\overrightarrow{\mathrm{AP}}|=2 |\overrightarrow{\mathrm{BP}}|$を満たす点$\mathrm{P}$の軌跡は,
\[ \overrightarrow{\mathrm{MO}}=\frac{[テ]}{[ト]} \overrightarrow{\mathrm{MA}} \]
を満たす点$\mathrm{O}$を中心とする半径
\[ \frac{[ナ]}{[ニ]} |\overrightarrow{\mathrm{MA}}| \]
の円である.
(5)同じ大きさの赤玉と白玉が何個か袋に入っている.よくかきまぜた後,この袋の中から同時に$2$個の玉を取り出したとき,$2$個とも赤の確率を$p$,$2$個のうち$1$個が赤,$1$個が白の確率を$q$,$2$個とも白の確率を$r$と書くとすると,それらの比例関係は次のようになった.
\[ p:q:r=14:20:5 \]
この袋の中の赤玉の個数は$[ヌ]$,白玉の個数は$[ネ]$である.
(6)$a,\ b,\ c$は次の方程式を満たす整数とする.
\[ a \log_{10} \frac{5}{6}+b \log_{10} 15+c \log_{10} \frac{10}{9}=\log_{10} 5000 \]
このとき,$a=[ノ]$,$b=[ハ]$,$c=[ヒ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
北海学園大学 私立 北海学園大学 2014年 第1問
$x$の$2$次関数$y=x^2-(2a^2-4a)x+a^4-4a^3+3a^2+1$のグラフについて,次の問いに答えよ.ただし,$a$は$0<a<2$を満たす実数とする.

(1)頂点の座標を求めよ.
(2)頂点が直線$y=-x$上にあるような$a$の値を求めよ.
(3)原点と頂点を通る直線の傾きの絶対値が$1$以上となるような$a$の値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2014年 第3問
対角線が$\mathrm{AC}$,$\mathrm{BD}$である平行四辺形$\mathrm{ABCD}$の面積は$8 \sqrt{15}$であり,三角形$\mathrm{ABD}$は鋭角三角形である.このとき,頂点$\mathrm{D}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{DH}$とし,$\mathrm{AB}=8$,$\mathrm{AH}=x$,$\mathrm{BD}=y$とする.ただし,$x>0$,$y>0$とする.

(1)$1 \leqq x \leqq 7$のとき,$y$の値の範囲を求めよ.
(2)$x=1$のとき,三角形$\mathrm{ABD}$の内接円の面積$S$の値を求めよ.
(3)三角形$\mathrm{ABD}$の内接円と三角形$\mathrm{BCD}$の内接円が接するとき,$x$の値を求めよ.
北海学園大学 私立 北海学園大学 2014年 第1問
次の各問いに答えよ.

(1)$2$つの不等式$x^2-x-6<0$と$x^2-x-2>0$を同時に満たす$x$の値の範囲を求めよ.
(2)放物線$y=x^2-2x+2$を$x$軸に関して対称移動した後に,$x$軸方向に$3$,$y$軸方向に$4$だけ平行移動した放物線の頂点の座標を求めよ.
(3)$0^\circ \leqq \theta \leqq {90}^\circ$のとき,$\displaystyle \frac{2}{1+\tan^2 \theta}+4 \cos \theta-2 \sin^2 \theta-1=0$を満たす$\theta$の値を求めよ.
広島工業大学 私立 広島工業大学 2014年 第4問
$a$を定数とする.直線$\ell:y=6ax$,曲線$C:y=|3x^2-6x|$について,次の問いに答えよ.

(1)$\ell$と$C$の共有点が$3$個になるような$a$の範囲を求めよ.
(2)$\displaystyle a=\frac{1}{2}$とし,$\ell$と$C$の共有点の$x$座標を小さい順に$x_1,\ x_2,\ x_3$とする.このとき,$\ell$と$C$で囲まれた部分のうち$x$座標が$x_2$以上の部分の面積を求めよ.
星薬科大学 私立 星薬科大学 2014年 第4問
次の問に答えよ.

(1)不等式$\displaystyle \frac{1}{{125}^{x^2}}>5^{20-17x}$を満たす$x$の値の範囲は$\displaystyle \frac{[$32$]}{[$33$]}<x<[$34$]$である.また,$x$がこの値の範囲内で方程式$\displaystyle \frac{x^{16}}{256}=x^{8 \log_2 x}$を満たすとき,$x$の値は$x=[$35$]$となる.
(2)$k$を定数として,$x$の方程式$2^{3x}-2^{2(x+1)}+2^{x+2}+2^x-3=k$の解が$1$つの実数解のみであるとき,$k$がとりえる値の範囲は
\[ -[$36$]<k<-\frac{[$37$][$38$]}{[$39$][$40$]},\quad -[$41$]<k \]
である.
東京薬科大学 私立 東京薬科大学 2014年 第2問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)不等式
\[ 1+\frac{1}{\log_2 x}-\frac{3}{\log_3 x}<0 \]
を解くと,
\[ [タ]<x<\frac{[チツ]}{[テ]} \]
である.
(2)関数$f(x)=8^x+8^{-x}-5(4^x+4^{-x})+6(2^x+2^{-x})$がある.ただし,$x$は全ての実数を動く.

(i) $2^x+2^{-x}=t$とおくとき,$t$の取り得る値の範囲は$t \geqq [$*$ ト]$である.
(ii) $4^x+4^{-x}$,$8^x+8^{-x}$を$t$の式で表すと
\[ 4^x+4^{-x}=t^2+[$* ナ$],\quad 8^x+8^{-x}=t^3+[$* ニ$]t \]
である.
(iii) $f(x)$を$t$の式で表すと,$f(x)=t^3+[$*$ ス]t^2+[$*$ ネ]t+[$*$ ノハ]$である.
\mon[$\tokeishi$] $f(x)$の最小値は$[$*$ ヒ]$である.
東京薬科大学 私立 東京薬科大学 2014年 第4問
中心$\mathrm{O}$,半径$1$の円周上に定点$\mathrm{A}$と動点$\mathrm{P}$,$\mathrm{Q}$があり,$\mathrm{P}$,$\mathrm{Q}$は常に$\angle \mathrm{PAQ}={120}^\circ$を満たしながら動いている.$\angle \mathrm{OAP}=\theta$として次の各問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$\theta$の動ける範囲は${[あい]}^\circ<\theta<{[うえ]}^\circ$である.
(2)$\mathrm{AP}$,$\mathrm{AQ}$を$\sin \theta$,$\cos \theta$を用いて表すと,
\[ \mathrm{AP}=[お] \cos \theta,\quad \mathrm{AQ}=\sqrt{[か]} \sin \theta+[$*$ き] \cos \theta \]
となる.
(3)$\triangle \mathrm{OPQ}$の面積は,点$\mathrm{P}$,$\mathrm{Q}$がどこにあっても常に$\displaystyle \frac{\sqrt{[く]}}{[け]}$である.
(4)$\triangle \mathrm{APQ}$の面積$S(\theta)$を$\sin 2\theta$,$\cos 2\theta$を用いて表すと,
\[ S(\theta)=\frac{[こ]}{[さ]} \sin 2\theta-\frac{\sqrt{[し]}}{[す]} \cos 2\theta-\frac{\sqrt{[せ]}}{[そ]} \]
となり,$S(\theta)$は$\theta={[たち]}^\circ$のとき最大値$\displaystyle \frac{\sqrt{[つ]}}{[て]}$をとる.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。