タグ「範囲」の検索結果

51ページ目:全1424問中501問~510問を表示)
千葉大学 国立 千葉大学 2014年 第6問
実数$a$に対し,関数$\displaystyle f(x)=\int_x^{x+1} |t+1| \, dt+a$を考える.曲線$C:y=f(x)$が$x$軸と$2$個の共有点を持つための$a$の範囲を求めよ.またこのとき曲線$C$と$x$軸で囲まれる部分の面積を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
信州大学 国立 信州大学 2014年 第6問
すべての実数$x,\ y$に対して不等式
\[ \frac{1}{1+x^2+(y-x)^2} \leqq \frac{a}{1+x^2+y^2} \]
が成り立つとき,$a$の値の範囲を求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$a,\ b$を正の実数とするとき,不等式
\[ a^3+b^3 \geqq a^2b+ab^2 \]
が成り立つことを示しなさい.
(2)$2$次方程式
\[ 2x^2-kx+1=0 \]
が,$0<x<1$および$1<x<2$の範囲に解を$1$つずつもつとき,定数$k$の値の範囲を求めなさい.
(3)正の実数$x,\ y,\ z$が
\[ \frac{yz}{x}=\frac{zx}{4y}=\frac{xy}{9z} \]
を満たすとする.このとき,式
\[ \frac{x+y+z}{\sqrt{x^2+y^2+z^2}} \]
の値を求めなさい.
福島大学 国立 福島大学 2014年 第3問
円$C:x^2+y^2=2$と直線$\ell:x+y=k$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.

(1)$k$の値の範囲を求めなさい.
(2)$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とするとき,$\alpha+\beta$および$\alpha \beta$を$k$を用いて表しなさい.
(3)線分$\mathrm{PQ}$の長さを$k$を用いて表しなさい.
(4)円$C$上の点$\mathrm{A}(-1,\ -1)$について
\[ 2 \mathrm{PQ}=\mathrm{AP} \]
となるときの$k$の値を求めなさい.
福島大学 国立 福島大学 2014年 第3問
円$C:x^2+y^2=2$と直線$\ell:x+y=k$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.

(1)$k$の値の範囲を求めなさい.
(2)$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とするとき,$\alpha+\beta$および$\alpha \beta$を$k$を用いて表しなさい.
(3)線分$\mathrm{PQ}$の長さを$k$を用いて表しなさい.
(4)円$C$上の点$\mathrm{A}(-1,\ -1)$について
\[ 2 \mathrm{PQ}=\mathrm{AP} \]
となるときの$k$の値を求めなさい.
福島大学 国立 福島大学 2014年 第5問
$a,\ b$を正の定数とし,関数$y=f(x)$,$y=g(x)$を次のように定める.


$f(x)=2 \sqrt{x-a} \quad (x \geqq a)$

$\displaystyle g(x)=\frac{x^2}{4}+b \quad (x \geqq 0)$


$y=f(x)$のグラフを$C_1$,$y=g(x)$のグラフを$C_2$とし,$C_1$と$C_2$は$1$点$\mathrm{P}$において接している.すなわち,点$\mathrm{P}$は$C_1$,$C_2$上にあり,点$\mathrm{P}$におけるそれぞれの接線は一致する.

(1)関数$y=f(x)$の導関数を求めなさい.
(2)点$\mathrm{P}$の$x$座標を$t$とするとき,$a$および$b$を$t$を用いて表しなさい.
(3)$t$の値の範囲を求めなさい.
(4)$C_1$,$C_2$,$x$軸,$y$軸で囲まれた図形の面積$S$を$t$を用いて表しなさい.
(5)$S$の最大値と,そのときの$t$の値を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
$a_1=0$,$a_{n+1}=\log (a_n+e) (n=1,\ 2,\ 3,\ \cdots)$で定まる数列$\{a_n\}$の収束について調べたい.以下の問いに答えなさい.

(1)方程式$x=\log (x+e)$は$x>0$の範囲でただ$1$つの実数解$\beta$をもつことを証明しなさい.
(2)すべての自然数$n$について$0 \leqq a_n<\beta$が成り立つことを証明しなさい.
(3)$0<a<b$のとき$\displaystyle \log b-\log a<\frac{b-a}{a}$が成り立つことを証明しなさい.
(4)すべての自然数$n$について$\displaystyle \beta-a_{n+1}<\frac{1}{e}(\beta-a_n)$が成り立つことを証明し,これを用いて$\displaystyle \lim_{n \to \infty}a_n=\beta$を示しなさい.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。