タグ「範囲」の検索結果

46ページ目:全1424問中451問~460問を表示)
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
滋賀大学 国立 滋賀大学 2014年 第4問
$k$を正の定数とする.円$C:x^2+y^2-4x-2y+1=0$と共有点をもたない直線$\displaystyle \ell:y=-\frac{1}{2}x+k$について,次の問いに答えよ.

(1)$k$のとりうる値の範囲を求めよ.
(2)$\ell$上の$2$点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ$(2,\ k-1)$,$(2k-2,\ 1)$とする.点$\mathrm{P}$が$C$上を動くとき,$\triangle \mathrm{PAB}$の重心$\mathrm{Q}$の軌跡を求めよ.
(3)$(2)$で求めた$\mathrm{Q}$の軌跡と$C$がただ$1$つの共有点をもつとき,$k$の値を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第4問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$x:(1-x)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{CM}}$を$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)直線$\mathrm{CM}$上に,$\overrightarrow{\mathrm{CQ}}=y \overrightarrow{\mathrm{CM}}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{CM}}$が垂直であるとき,$y$を$x$を用いて表せ.
(3)$x$が$0<x<1$の範囲を動くとき,三角形$\mathrm{CMP}$の面積の最小値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第3問
$xy$平面内の直線$L$を$x-ay+a^2-1=0$とするとき,以下の問いに答えよ.ただし,$a$は実数とする.

(1)直線$L$と$x$軸との交点の座標を$a$を用いて表せ.
(2)直線$L$は$a$が$0$でないとき$y$軸と交わる.このときの$y$軸との交点の座標を$a$を用いて表せ.
(3)直線$L$上の点$(x,\ y)$がとりえる範囲を,$x$と$y$に関する不等式で表せ.
(4)$(3)$で求めた範囲の境界を曲線$C$とする.直線$L$と曲線$C$が接することを示し,接点の座標を$a$を用いて表せ.
(5)$a>0$のとき,直線$L$と$(4)$の曲線$C$および$x$軸で囲まれ,かつ$x \geqq 0$の部分の面積を$a$を用いて表せ.
三重大学 国立 三重大学 2014年 第5問
実数$a$に対して,下の$4$つの条件$p,\ q,\ r,\ s$を考える.ただし,実数$k$に対して,$[k]$は$k$以下の最大の整数を表し,$\langle k \rangle$は$k$以上の最小の整数を表すとする.たとえば,$k=2.15$のとき,$[k]=2$であり,$\langle k \rangle=3$である.また,$|k|$は$k$の絶対値を表す.

$p:x^2+4x+a^2=0$を満たす実数$x$が存在する.
$q:[a]<\langle a \rangle$
$\displaystyle r:|a-1.5|<\frac{1}{|a-1.5|+1.5}$
$\displaystyle s:0<a<\pi$,かつ,$\displaystyle \sin \left( 2a-\frac{\pi}{4} \right)+\sin \left( 2a+\frac{\pi}{4} \right)=0$

上の$p,\ q,\ r,\ s$それぞれについて,条件を満たす$a$の範囲を求めよ.さらに,以下の$①$,$②$,$③$それぞれについて,$p,\ q,\ r,\ s$の中から,あてはまるものを全て答えよ.

$①$ $p$であるための十分条件である.
$②$ $q$であるための十分条件である.
$③$ $r$であるための十分条件である.
徳島大学 国立 徳島大学 2014年 第4問
次の問いに答えよ.

(1)$2$次方程式$x^2+2mx+m^2+2m-8=0$が異なる$2$つの負の解をもつとき,定数$m$の範囲を求めよ.
(2)数列$\{a_n\}$は初項$1$,公比$r (0<r<1)$の等比数列である.数列$\{b_n\}$は$\displaystyle a_{n+1}=\frac{(a_n)^{\frac{4}{3}}}{\sqrt{b_n}}$を満たす.数列$\{b_n\}$の一般項および無限級数$\displaystyle \sum_{n=1}^\infty b_n$の和を求めよ.
岐阜大学 国立 岐阜大学 2014年 第1問
$t$は実数で$0<t<2$とする.図のように,$1$辺の長さが$2$の正四面体$\mathrm{ABCD}$の辺$\mathrm{AC}$上に点$\mathrm{P}$があり,辺$\mathrm{AD}$上に点$\mathrm{Q}$がある.$\mathrm{CP}=\mathrm{AQ}=t$のとき,以下の問に答えよ.
(図は省略)

(1)線分$\mathrm{BP}$,$\mathrm{PQ}$,$\mathrm{QB}$の長さを,それぞれ$t$を用いて表せ.
(2)$t$が$0<t<2$の範囲を変化するとき,三角形$\mathrm{BPQ}$の$3$辺の長さの和の最小値を求めよ.
(3)三角錐$\mathrm{ABPQ}$の体積を$t$を用いて表せ.
(4)$t$が$0<t<2$の範囲を変化するとき,三角錐$\mathrm{ABPQ}$の体積の最大値を求めよ.
岐阜大学 国立 岐阜大学 2014年 第1問
$t$は実数で$0<t<2$とする.図のように,$1$辺の長さが$2$の正四面体$\mathrm{ABCD}$の辺$\mathrm{AC}$上に点$\mathrm{P}$があり,辺$\mathrm{AD}$上に点$\mathrm{Q}$がある.$\mathrm{CP}=\mathrm{AQ}=t$のとき,以下の問に答えよ.
(図は省略)

(1)線分$\mathrm{BP}$,$\mathrm{PQ}$,$\mathrm{QB}$の長さを,それぞれ$t$を用いて表せ.
(2)$t$が$0<t<2$の範囲を変化するとき,三角形$\mathrm{BPQ}$の$3$辺の長さの和の最小値を求めよ.
(3)三角錐$\mathrm{ABPQ}$の体積を$t$を用いて表せ.
(4)$t$が$0<t<2$の範囲を変化するとき,三角錐$\mathrm{ABPQ}$の体積の最大値を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲で方程式$\cos 2x-\cos x=0$の解を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲で$2$つの曲線$y=\cos 2x$と$y=\cos x$で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$2$つの実数$a,\ b$がともに$2$より大きいための必要十分条件は,$ab-2(a+b)+4>0$かつ$a+b>4$であることを示せ.
(2)定数$k$に対して,方程式
\[ (\log_2x)^2-(k+2) \log_2x-k+17=0 \]
を考える.

(i) 方程式が実数解$\alpha,\ \beta$をもつとき,$\log_2(\alpha\beta)$と$(\log_2 \alpha)(\log_2 \beta)$を$k$を用いて表せ.
(ii) 方程式が$4$より大きい異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。