タグ「範囲」の検索結果

45ページ目:全1424問中441問~450問を表示)
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)$0<\theta<\pi$のとき,不等式$\cos 3\theta+4 \cos^2 \theta<0$を満たす$\theta$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$2$直線$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{P}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}$の和を求めよ.

{\bf 補足説明}
設問中の式の意味は
\[ \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}=\frac{1}{2}+\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+\cdots \]
である.
信州大学 国立 信州大学 2014年 第3問
$\mathrm{O}$を原点とする座標空間の$2$点$\mathrm{P}(\cos t,\ \sin t,\ 0)$,$\mathrm{Q}(\cos 2t,\ \sin 2t,\ \cos t)$について,次の問いに答えよ.ただし,$0 \leqq t \leqq 2\pi$とする.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$は平行でないことを示せ.
(2)三角形$\mathrm{OPQ}$の面積$S(t)$は$t$の値に関係なく一定であることを示せ.
(3)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$のなす角$\theta(t)$のとる値の範囲を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第2問
放物線$y=x^2$上の動点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(q,\ q^2)$が次の条件をみたしている.
\[ 0<p<q,\quad \angle \mathrm{POQ}=\frac{\pi}{4} \]
ただし$\mathrm{O}$は原点である.点$\mathrm{P}$と点$\mathrm{Q}$における接線の交点を$\mathrm{R}$とする.

(1)$p$のとり得る値の範囲を求めよ.
(2)$q$を$p$の式で表せ.
(3)点$\mathrm{R}$の$x$座標,$y$座標それぞれのとり得る値の範囲を求めよ.
(4)点$\mathrm{R}$が描く曲線の方程式を求めよ.
(5)点$\mathrm{R}$が描く曲線の漸近線を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に$2$つの曲線$C_1:y=-x^2+12$,$C_2:y=x^2-10x+29$がある.曲線$C_1$上を動く点$\mathrm{P}$の$x$座標を$a$とし,曲線$C_1$の点$\mathrm{P}$における接線を$\ell$とする.ただし,$a>0$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸,$y$軸で囲まれた三角形の面積を$S$とする.$S$を$a$を用いて表せ.また,$S$の最小値とそのときの$a$の値を求めよ.
(3)接線$\ell$と曲線$C_2$が$2$個の共有点をもつような$a$の値の範囲を求めよ.
(4)接線$\ell$と曲線$C_2$が$2$個の共有点をもつとき,それらの中点の軌跡を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
旭川医科大学 国立 旭川医科大学 2014年 第2問
$\displaystyle 0<a \leqq \frac{\pi}{2}$とし,曲線$y=1-\cos x (0 \leqq x \leqq a)$を$C$とする.$0<t<a$とし,原点と$C$上の点$(t,\ 1-\cos t)$を通る直線を$\ell$とおくとき,次の問いに答えよ.

(1)曲線$C$と直線$\ell$とで囲まれた部分の面積を$S_1(t)$,$t \leqq x \leqq a$の範囲で$C$と$\ell$と直線$x=a$とで囲まれた部分の面積を$S_2(t)$とおくとき,$S_1(t)+S_2(t)$を求めよ.
(2)$S_1(t)+S_2(t)$を最小とする$t$の値を$t_0$とするとき,$t_0$を$a$を用いて表せ.

(3)$\displaystyle \lim_{a \to +0} \frac{S_1(t_0)-S_2(t_0)}{a^3}$を求めよ.ただし,$\displaystyle a-\frac{a^3}{3!}<\sin a<a-\frac{a^3}{3!}+\frac{a^5}{5!} (a>0)$は用いてよい.
宮崎大学 国立 宮崎大学 2014年 第4問
$t$を定数とする$2$次方程式$\displaystyle z^2-tz+t-\frac{1}{2}=0$について,次の各問に答えよ.ただし,定数$t$は実数とする.

(1)この$2$次方程式が実数解をもち,すべての解が$-1$以上$1$以下であるような定数$t$の値の範囲を求めよ.
(2)この$2$次方程式が$2$つの共役な虚数解$z=x \pm yi$($x,\ y$は実数,$i$は虚数単位)をもち,$x^2+y^2 \leqq 1$を満たすような定数$t$の値の範囲を求めよ.
弘前大学 国立 弘前大学 2014年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$に対し,辺$\mathrm{AB}$の中点を$\mathrm{E}$,辺$\mathrm{AC}$の中点を$\mathrm{F}$,辺$\mathrm{BD}$を$t:(1-t)$の比に内分する点を$\mathrm{G}$,辺$\mathrm{CD}$を$u:(1-u)$の比に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$,$0<u<1$とする.次の問いに答えよ.

(1)$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が同一平面上にあるならば,$t=u$が成り立つことを示せ.
(2)$t=u$のとき,$\mathrm{EF}^2+\mathrm{FH}^2+\mathrm{HG}^2+\mathrm{GE}^2$の値の範囲を求めよ.
鳴門教育大学 国立 鳴門教育大学 2014年 第4問
$2$次関数$y=2x^2-(3k+1)x+k+5$,および$y=-x^2+(k+2)x+k-1$で表されるグラフを,それぞれ$C_1$,$C_2$とするとき,次の問いに答えなさい.

(1)$C_1$,$C_2$が$2$つの異なる交点をもつような定数$k$の値の範囲を求めなさい.また,$k$がその範囲にあるとき,$2$つの交点を結ぶ線分の中点の$x$座標を求めなさい.
(2)$C_1$,$C_2$が$2$つの異なる交点をもち,これら$2$つの交点を通る直線の傾きが$3$となるときの$k$の値を求めなさい.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。