タグ「範囲」の検索結果

32ページ目:全1424問中311問~320問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
早稲田大学 私立 早稲田大学 2015年 第4問
座標平面の第$1$象限に曲線$\displaystyle C_0:y=\frac{1}{x}+x (x>0)$と曲線$\displaystyle C:y=\frac{1}{x} (x>0)$がある.$C_0$上の点$\displaystyle \left( a,\ \frac{1}{a}+a \right)$における$C_0$の接線を$\ell$とする.このとき,$\ell$は曲線$C$と$2$点で交わっているとする.

(1)このように,接線$\ell$と曲線$C$が$2$点で交わる$a$の範囲を求めよ.
(2)接線$\ell$と曲線$C$とで囲まれた部分の面積を求めよ.
(3)上の$(2)$で求めた面積を$S(a)$とするとき,
\[ \frac{a^3}{1-a^2}<S(a)<\frac{2a}{1-a^2} \]
が成り立つことを示せ.
東京理科大学 私立 東京理科大学 2015年 第3問
不等式$\displaystyle \frac{x}{x-1} \geqq 0$を満たす実数$x$の範囲を定義域とする関数
\[ f(x)=3x \sqrt{\frac{x}{x-1}} \]
について,以下の問いに答えよ.

(1)関数$f(x)$の定義域を求めよ.
(2)$\displaystyle a_1=\lim_{x \to \infty} \frac{f(x)}{x}$,$\displaystyle a_2=\lim_{x \to -\infty} \frac{f(x)}{x}$とする.$a_1$,$a_2$の値を求めよ.
(3)$(2)$の$a_1,\ a_2$に対して,$\displaystyle b_1=\lim_{x \to \infty}(f(x)-a_1x)$,$\displaystyle b_2=\lim_{x \to -\infty}(f(x)-a_2x)$とする.$b_1$,$b_2$の値を求めよ.
(4)関数$f(x)$の極小値を求めよ.
(5)曲線$y=f(x)$の漸近線の方程式を求めよ.
(6)$k$を定数とするとき,方程式$f(x)=k$の実数解の個数を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
次の各問に答えよ.

(1)整式$P(x)$を$(x-1)(x-4)$で割ると余りは$43x-35$であり,$(x-2)(x-3)$で割ると余りは$39x-55$であるという.このとき,$P(x)$を
\[ (x-1)(x-2)(x-3)(x-4) \]
で割ったときの余りを求めよ.
(2)座標平面に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$,$\mathrm{C}(-1,\ 1)$,$\mathrm{D}(-1,\ -1)$がある.実数$x$が$0 \leqq x \leqq 1$の範囲にあるとき,$2$点$\mathrm{P}(x,\ 0)$,$\mathrm{Q}(-x,\ 0)$を考える.このとき,$5$本の線分の長さの和
\[ \mathrm{AP}+\mathrm{BP}+\mathrm{PQ}+\mathrm{CQ}+\mathrm{DQ} \]
が最小となるような$x$の値を求めよ.ただし,$x=0$のときは$\mathrm{PQ}=0$とする.
(3)$1$から$10$までの自然数からなる集合$\{1,\ 2,\ \cdots,\ 10\}$の中から異なる$3$つの数を選ぶとする.このとき,選んだ数の和が$3$で割り切れる確率を求めよ.
(4)座標平面において楕円$\displaystyle E:\frac{x^2}{a}+y^2=1$を考える.ただし,$a$は$a>0$をみたす定数とする.楕円$E$上の点$\mathrm{A}(0,\ 1)$を中心とする円$C$が,次の$2$つの条件をみたしているとする.

(i) 楕円$E$は円$C$とその内部に含まれ,$E$と$C$は$2$点$\mathrm{P}$,$\mathrm{Q}$で接する.
(ii) $\triangle \mathrm{APQ}$は正三角形である.

このとき,$a$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$\cos 3 \theta$を$\cos \theta$のみの式で表せ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $3$次関数$\displaystyle f(x)=x^3-\frac{3}{4}x$について増減表を書き,$y=f(x)$のグラフの概形を描け.
(ii) $y=f(x)$のグラフと直線$y=k$が共有点を$2$つまたは$3$つもつような定数$k$の値の範囲を求めよ.
また,$k$がこの範囲を動くとき,共有点の$x$座標のとる値の範囲を求めよ.

(3)$3$次方程式$\displaystyle x^3-\frac{3}{4}x-\frac{1}{8}=0$の解を$x=\cos \theta (0 \leqq \theta \leqq \pi)$とおくとき,$\theta$の値を求めよ.
福岡大学 私立 福岡大学 2015年 第1問
$f(x)=2x^2-x$,$g(x)=x^2+3x+a$とする.$-1 \leqq x \leqq 1$のすべての$x$に対して$f(x)>g(x)$となるような$a$の値の範囲は$[ ]$である.また,$-1 \leqq x \leqq 1$の少なくとも$1$つの$x$に対して$f(x)>g(x)$となるような$a$の値の範囲は$[ ]$である.
福岡大学 私立 福岡大学 2015年 第2問
$\theta$が$0 \leqq \theta \leqq \pi$の範囲を動くとき,$t=\sqrt{3} \sin \theta+\cos \theta$のとりうる値の範囲は$[ ]$であり,また,$K=2 \sin^2 \theta+2 \sqrt{3} \sin \theta \cos \theta+2 \sqrt{3} \sin \theta+2 \cos \theta-5$のとりうる値の範囲は$[ ]$である.
広島工業大学 私立 広島工業大学 2015年 第2問
曲線$y=x^3+3x^2$について,次の問いに答えよ.

(1)曲線上の点$(t,\ t^3+3t^2)$における接線の方程式を求めよ.
(2)曲線に点$\mathrm{A}(1,\ -4)$から引いた接線の方程式を求めよ.
(3)曲線に点$\mathrm{P}(1,\ p)$から異なる$3$本の接線が引けるような$p$の値の範囲を求めよ.
広島工業大学 私立 広島工業大学 2015年 第6問
次の問いに答えよ.

(1)不等式$6-x^2 \geqq |x|$を解け.
(2)$(1)$の範囲で,関数$y=x^2-2 |x|-1$の最大値と最小値,およびそのときの$x$の値を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。