タグ「範囲」の検索結果

31ページ目:全1424問中301問~310問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}(0,\ 0)$と点$\mathrm{A}(0,\ 2)$を通る$2$円
\[ C_1:(x+1)^2+(y-1)^2=2,\quad C_2:(x-2)^2+(y-1)^2=5 \]
が与えられている.原点$\mathrm{O}$を通る直線$L$と$C_1$,$C_2$との交点($\neq \mathrm{O}$)をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{D} \neq \mathrm{E}$のとき,線分$\mathrm{DE}$の内点$\mathrm{P}$を$\mathrm{DP}:\mathrm{PE}=3:1$となるようにとる.$\mathrm{D}=\mathrm{E}$のとき,$\mathrm{P}=\mathrm{D}$とする.直線$L$を原点を中心に回転させると,点$\mathrm{P}$は
\[ \left( \frac{[$13$][$14$]}{[$15$][$16$]},\ [$17$][$18$] \right) \]
を中心とする円周上にある.
(2)$\displaystyle \frac{\pi}{12}$における$\sin,\ \cos$の値は
\[ \begin{array}{l}
\displaystyle\sin \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}-\sqrt{[$21$][$22$]}}{4} \\
\displaystyle\cos \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}+\sqrt{[$21$][$22$]}}{4} \phantom{\displaystyle\frac{\frac{[ ]^2}{2}}{2}}
\end{array} \]
である.これを用いて,$0<x<\pi$の範囲で方程式
\[ \frac{\sqrt{3}+1}{\cos x}-\frac{\sqrt{3}-1}{\sin x}-4 \sqrt{2}=0 \]
を解けば
\[ x=\frac{[$23$][$24$]}{[$25$][$26$]}\pi \]
を得る.
上智大学 私立 上智大学 2015年 第2問
$a$を正の実数とし,関数$f(x)=\sin x+a \sin 3x$を考える.

(1)$a=2$のとき,
\[ f(x)=[オ] \sin x+[カ] \sin^n x,\quad \text{ただし}n=[キ] \]
である.
(2)$\displaystyle x=\frac{\pi}{2}$で$f(x)$が最大値をとるときの$a$の範囲は$\displaystyle 0<a \leqq \frac{[ク]}{[ケ]}$である.
(3)$\displaystyle a>\frac{[ク]}{[ケ]}$の範囲で,$f(x)$の最大値がもっとも小さくなるのは$\displaystyle a=\frac{[コ]}{[サ]}$のときである.
このとき$f(x)$の最大値は$\displaystyle \frac{\sqrt{[シ]}}{[ス]}$であり,最大値を与える$x$に対して,$\displaystyle \sin x=\frac{\sqrt{[セ]}}{[ソ]}$である.
上智大学 私立 上智大学 2015年 第3問
$t$を実数とする.座標平面上に,$2$点$\mathrm{A}(t,\ 0)$,$\mathrm{B}(0,\ 1-\sqrt{3}t)$と,原点を中心とする半径$1$の円$C$がある.点$\mathrm{P}$が円$C$上を動くときの$2$つのベクトル$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{BP}}$の内積の最大値を$M_t$とおき,$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=M_t$となる点$\mathrm{P}$を$\mathrm{P}_t$と表す.

(1)$\displaystyle t=\frac{1}{\sqrt{3}}$のとき,
\[ M_t=[ナ]+\frac{1}{\sqrt{[ニ]}} \]
であり,$\mathrm{P}_t$の座標は$\left( [ヌ],\ [ネ] \right)$である.
(2)実数$t$が$t \geqq 0$の範囲を動くとき,$M_t$は$\displaystyle t=\frac{\sqrt{[ノ]}}{[ハ]}$で最小値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.

(3)$\mathrm{P}_t$の座標を$(\cos \theta,\ \sin \theta)$(ただし,$0 \leqq \theta<2\pi$)と表す.実数$t$が$t \geqq 0$の範囲を動くとき,$\theta$は
\[ \frac{[ヘ]}{[ホ]}\pi<\theta \leqq \frac{[マ]}{[ミ]}\pi \]
の範囲を動く.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
方程式$y=|x|$を満たす座標平面上の点$(x,\ y)$全体の集合$B$を

$B=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は方程式$y=|x|$を満たす$\}$

と表す.同様に,集合$C_r(a,\ b)$,$D$をそれぞれ

$C_r(a,\ b)=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は方程式$(x-a)^2+(y-b)^2=r^2$を満たす$\}$,
\qquad\quad\;\! $D=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は不等式$y \leqq |x|$を満たす$\}$

で定める.ただし,$a,\ b$は実数,$r$は正の実数とする.

(1)集合$B \cap C_r(1,\ 2)$が$2$個の要素からなるように,$r$の値の範囲を定めよ.
(2)$C_{2 \sqrt{2}}(a,\ b) \subset D$が成り立つような点$(a,\ b)$全体の集合を斜線で図示せよ.
東京理科大学 私立 東京理科大学 2015年 第2問
$t$を$0<t<1$を満たす実数として,関数$f(x)$を
\[ f(x)=-x^2+(1+t^2)x-t^2 \]
と定める.座標平面において,原点$\mathrm{O}$から放物線$y=f(x)$へ引いた接線のうち,接点の$x$座標が正のものを考える.その接点を$\mathrm{P}(p,\ f(p))$とおく.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)放物線$y=f(x)$の$x \leqq p$の部分,$x$軸,直線$x=p$で囲まれる図形の面積を$S_1$とする.$S_1$を$t$を用いて表せ.
(3)線分$\mathrm{OP}$,$x$軸,直線$x=p$で囲まれる図形の面積を$S_2$とし,$(2)$の$S_1$に対して$S=S_2-S_1$とおく.$t$が$0<t<1$の範囲を動くとき$S$を最大にする$t$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第3問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1}{5} \sin x+1$のとり得る値の範囲は
\[ \frac{[ア]}{[イ]} \leqq f(x) \leqq \frac{[ウ]}{[エ]} \]
である.
(2)関数$\displaystyle g(x)=\frac{1}{3} \sin x-\frac{1}{4} \cos x+1$を考える.$g(x)$のとり得る値の範囲は
\[ \frac{[オ]}{[カ][キ]} \leqq g(x) \leqq \frac{[ク][ケ]}{[コ][サ]} \]
である.
また,$g(\alpha)=1$となる実数$\alpha$をとると
\[ \tan \alpha=\frac{[シ]}{[ス]} \]
となる.
(3)関数$\displaystyle h(x)=\sin^2 x+\frac{1}{2} \sin x \cos x-\frac{1}{3} \cos^2 x+1$のとり得る値の範囲は
\[ \frac{[セ][ソ]-\sqrt{[タ][チ]}}{[ツ][テ]} \leqq h(x) \leqq \frac{[ト][ナ]+\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。