タグ「範囲」の検索結果

21ページ目:全1424問中201問~210問を表示)
横浜国立大学 国立 横浜国立大学 2015年 第3問
実数$a$に対し,$xy$平面上の放物線$C:y=(x-a)^2-2a^2+1$を考える.次の問いに答えよ.

(1)$a$がすべての実数を動くとき,$C$が通過する領域を求め,図示せよ.
(2)$a$が$-1 \leqq a \leqq 1$の範囲を動くとき,$C$が通過する領域を求め,図示せよ.
岡山大学 国立 岡山大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,上に凸であり,原点および点$\mathrm{Q}(a,\ 0)$を通るものとする.ただし,$0<a<1$である.関数$y=x^2$のグラフを$C$,関数$y=f(x)$のグラフを$D$とし,$C$と$D$の共有点のうち,原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C$の接線の傾きを$m$,$D$の接線の傾きを$n$とするとき
\[ (2a-1)m=2an \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$f(x)$を$x$と$a$の式で表せ.
(2)$0 \leqq x \leqq a$の範囲で,曲線$D$と$x$軸で囲まれた図形の面積を$S(a)$とする.$S(a)$を$a$の式で表せ.
(3)$(2)$で求めた$S(a)$の$0<a<1$における最大値を求めよ.
金沢大学 国立 金沢大学 2015年 第2問
関数$f(x)=xe^x$について,次の問いに答えよ.

(1)関数$y=f(x)$について,増減および凹凸を調べ,そのグラフをかけ.ただし,必要ならば$\displaystyle \lim_{x \to -\infty}xe^x=0$を用いてもよい.
(2)不定積分$\displaystyle \int xe^x \, dx$,$\displaystyle \int x^2e^{2x} \, dx$をそれぞれ求めよ.
(3)$0 \leqq t \leqq 1$に対し$g(x)=f(x)-f(t)$とおく.$0 \leqq x \leqq 1$の範囲で,曲線$y=g(x)$と$x$軸ではさまれる部分を,$x$軸のまわりに$1$回転してできる回転体の体積を$V(t)$とする.$V(t)$を求めよ.
(4)$(3)$の$V(t)$が最小値をとるときの$t$の値を$a$とする.最小値$V(a)$と,$f(a)$の値を求めよ.ただし,$a$の値を求める必要はない.
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第4問
$n$は$2$以上の自然数とし,
\[ f(\theta)=\frac{\cos^{n-1}\theta \sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta} \]
とする.次の問いに答えよ.

(1)$t=\tan^n \theta$と変数変換することにより,$\displaystyle \int_0^{\frac{\pi}{4}} f(\theta) \, d\theta$を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で$f(\theta)$の最大値および最小値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
熊本大学 国立 熊本大学 2015年 第1問
$\triangle \mathrm{ABC}$の$3$辺の長さを$\mathrm{BC}=a$,$\mathrm{AC}=b$,$\mathrm{AB}=c$とし,条件
\[ a+b+c=1,\quad 9ab=1 \]
が成り立つとする.以下の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$\theta=\angle \mathrm{C}$とするとき,$\cos \theta$の値の範囲を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。