タグ「範囲」の検索結果

133ページ目:全1424問中1321問~1330問を表示)
九州工業大学 国立 九州工業大学 2010年 第2問
Oを原点とする座標空間の2点A$(0,\ 0,\ 2)$,P$(\cos \theta,\ 2+\sin \theta,\ 1)$に対して,直線AP上の点で原点Oから最も近い点をQ$(X,\ Y,\ Z)$とする.$0 \leqq \theta \leqq 2\pi$として,次に答えよ.

(1)$X,\ Y,\ Z$を$\theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0,\ \pi,\ \frac{3}{2}\pi$のときの点Qの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とする.$0 \leqq \theta \leqq 2\pi$のとき,$\overrightarrow{\mathrm{OQ}}=s\overrightarrow{a}+t\overrightarrow{b}+u\overrightarrow{c}$をみたす実数$s,\ t,\ u$を$\theta$を用いて表せ.また,$s+t+u$の値を求めよ.
(3)点Qから$xy$平面にひいた垂線と$xy$平面の交点をR$(X,\ Y,\ 0)$とする.$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,$xy$平面における点Rの軌跡を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第1問
実数$x,\ y$について,関係式$x^2+xy+y^2 = 3$が成り立つとする.このとき,次の問に答えよ.

(1)$x+y=s,\ xy = t$とおくとき,$t$を$s$の式で表せ.
(2)$s$のとり得る値の範囲を求めよ.
(3)$x^2+y^2+x+y=k$とおくとき,$k$を$s$の式で表せ.
(4)$k$のとり得る値の最大値$M$と最小値$m$を求めよ.
防衛大学校 国立 防衛大学校 2010年 第3問
関数$f(x)=x^3-3x^2+3ax+b \ (a,\ b \text{は定数})$について,次の問に答えよ.

(1)$f(x)$が極値を持つような$a$の値の範囲を求めよ.
(2)$f(x)$の極大値と極小値の差が32となるとき,$a$の値を求めよ.
(3)(2)で求めた$a$の値に対し,$f(x)$の区間$-4 \leqq x \leqq 4$における最大値が5であるとする.このとき,$b$の値とこの区間での$f(x)$の最小値$m$を求めよ.
山形大学 国立 山形大学 2010年 第3問
次の問に答えよ.

(1)$e^x-1-xe^{\frac{\pi}{2}}>0$を満たす$x$の範囲を求めよ.
(2)$x \neq 0$のとき,$\displaystyle \frac{e^x-1}{x}$と$\displaystyle e^{\frac{x}{2}}$の大小を調べよ.
(3)$p$を$0<p<1$である定数とする.$x>0, x \neq 1$のとき$\displaystyle \frac{x^p-1}{x-1}$と$px^{\frac{p-1}{2}}$の大小を調べよ.
電気通信大学 国立 電気通信大学 2010年 第2問
座標平面上を運動する動点P$(x,\ y)$が時刻$t$の関数として
\[ x=t \cos \alpha,\quad y=t \sin \alpha-t^2 \]
で与えられているとする.ただし,$\alpha$は$0 \leqq \alpha < 2\pi$を満たす定数とする.直線$y=x$を$\ell$とするとき,以下の問いに答えよ.

(1)時刻$t=0$における動点Pの速度$\overrightarrow{v}$とその大きさ$|\overrightarrow{v}|$を求めよ.
(2)Pが直線$\ell$上の点を通る時刻$t$をすべて求めよ.
(3)正の時刻においてPが$\ell$上の点を通るための$\alpha$の範囲を求めよ.

以下では,$\alpha$は(3)で求めた範囲にあるとする.

\mon[(4)] 正の時刻においてPが通る$\ell$上の点の$x$座標を求めよ.
\mon[(5)] (4)で求めた$\ell$上の点の$x$座標を$f(\alpha)$とし,$\alpha$を(3)で求めた範囲で変化させる.$f(\alpha)$の最大値,最小値を求め,それらを与える$\alpha$の値を求めよ.
茨城大学 国立 茨城大学 2010年 第2問
$a$を$0$でない実数とする.
\begin{align}
& C_1 : y = x^2+(a+1)x-a(2a+1) \nonumber \\
& C_2 : y = -x^2+(3a+1)x+a(2a-1) \nonumber
\end{align}
で表される曲線$C_1$と曲線$C_2$について,以下の各問に答えよ.

(1)$C_1$と$C_2$が異なる$2$交点をもつことを示せ.
(2)$C_1$と$C_2$の$2$交点を通る直線$\ell(a)$の方程式を求めよ.また,$\ell(a)$が$a$の値に関係なく必ず通る定点$\mathrm{P}$の座標を求めよ.
(3)(2)で求めた定点$\mathrm{P}$が$C_1$と$C_2$の$2$交点を結んだ線分上にあるような$a$の値の範囲を求めよ.
山形大学 国立 山形大学 2010年 第4問
次の問に答えよ.

(1)$e^x-1-xe^{\frac{\pi}{2}}>0$を満たす$x$の範囲を求めよ.
(2)$x \neq 0$のとき,$\displaystyle \frac{e^x-1}{x}$と$\displaystyle e^{\frac{x}{2}}$の大小を調べよ.
(3)$p$を$0<p<1$である定数とする.$x>0, x \neq 1$のとき$\displaystyle \frac{x^p-1}{x-1}$と$px^{\frac{p-1}{2}}$の大小を調べよ.
茨城大学 国立 茨城大学 2010年 第3問
点$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$がある.このとき,以下の各問に答えよ.

(1)実数$s,\ t$によって,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$で定められる点$\mathrm{P}$を考える.$s,\ t$が$s+2t \leqq 2$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(2)実数$u$によって,$\overrightarrow{\mathrm{OQ}}=(1-u)\overrightarrow{\mathrm{QA}}+2u\overrightarrow{\mathrm{QB}}$で定められる点$\mathrm{Q}$を考える.$u$が$0 \leqq u \leqq 1$を満たしながら動くとき,点$\mathrm{Q}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(3)(1)で得られた図形が,(2)で得られた図形によって$2$つの図形に分割される.この$2$つの図形の面積をそれぞれ$S,\ T (S \leqq T)$とおくとき,$\displaystyle \frac{S}{T}$の値を求めよ.
茨城大学 国立 茨城大学 2010年 第2問
$p$を$0<p<1$を満たす有理数の定数とし,関数$f(x)$を$f(x)=|x|^p$と定める.以下の各問に答えよ.

(1)曲線$y=f(x)$の概形を描け.
(2)$a$を$0$でない実数の定数とするとき,点$(a,\ f(a))$における曲線$y=f(x)$の接線の方程式を求めよ.また,接線と$x$軸の交点の$x$座標を求めよ.
(3)数列$\{a_n\}$を次のように定める:$a_1=1$とし,$n \geqq 2$のとき$a_n$を点$(a_{n-1},\ f(a_{n-1}))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標とする.このとき一般項$a_n$を$n$と$p$を用いて表せ.
(4)(3)で求めた数列$\{a_n\}$について,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線と,$x$軸,および直線$x=a_n$とで囲まれた部分の面積を$T_n$とする.$T_n$を$n$と$p$を用いて表せ.
(5)(4)の$T_n \ (n=1,\ 2,\ 3,\ \cdots)$について,無限級数$T_1+T_2+T_3+\cdots$が収束する$p$の範囲を求めよ.また,収束するときの無限級数の値を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。