タグ「範囲」の検索結果

131ページ目:全1424問中1301問~1310問を表示)
熊本大学 国立 熊本大学 2010年 第1問
原点をOとし,空間内に3点A$(4,\ 0,\ 0)$,B$(1,\ 2,\ 0)$,C$(2,\ 1,\ 2)$をとる.線分BCを$t:(1-t) \ (0<t<1)$に内分する点をPとおく.このとき,以下の問いに答えよ.

(1)$\triangle$OAPの面積を最小にする$t$の値を求めよ.
(2)Cを通り,3点O,A,Pを通る平面に垂直な直線と$xy$平面との交点をDとする.Dが$\triangle$OABの内部にあるとき,$t$の範囲を求めよ.
岡山大学 国立 岡山大学 2010年 第3問
原点を中心とする半径1の円を$C_1$とし,原点を中心とする半径$\displaystyle \frac{1}{2}$の円を$C_2$とする.$C_1$上に点P$_1(\cos \theta,\ \sin \theta)$があり,また,$C_2$上に点P$_2 \displaystyle (\frac{1}{2} \cos 3\theta,\ \frac{1}{2} \sin 3\theta)$がある.ただし,$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$であるとする.線分P$_1$P$_2$の中点をQとし,点Qの原点からの距離を$r(\theta)$とする.このとき,次の問いに答えよ.

(1)点Qの$x$座標の取りうる範囲を求めよ.
(2)点Qが$y$軸上にあるときの$\theta$の値を$\alpha$とする.このとき,$\alpha$および定積分
\[ \int_0^\alpha \{r(\theta)\}^2 \, d\theta \]
を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第1問
$a,\ b,\ c$を相異なる正の実数とするとき,以下の各問いに答えよ.

(1)次の$2$数の大小を比較せよ.
\[ a^3+b^3,\ a^2b+b^2a \]
(2)次の$4$数の大小を比較し,小さい方から順に並べよ.
\begin{eqnarray}
& & (a+b+c)(a^2+b^2+c^2),\quad (a+b+c)(ab+bc+ca), \nonumber \\
& & 3(a^3+b^3+c^3),\quad 9abc \nonumber
\end{eqnarray}
(3)$x,\ y,\ z$を正の実数とするとき
\[ \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \]
のとりうる値の範囲を求めよ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第2問
座標空間において,$8$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(0,\ 1,\ 1)$,$\mathrm{E}(1,\ 0,\ 1)$,$\mathrm{F}(1,\ 1,\ 0)$,$\mathrm{G}(1,\ 1,\ 1)$をとり,この$8$点を頂点とする立方体を$Q$とする.また点$\mathrm{P}(x,\ y,\ z)$と正の実数$t$に対し,$6$点$(x+t,\ y,\ z)$,$(x-t,\ y,\ z)$,$(x,\ y+t,\ z)$,$(x,\ y-t,\ z)$,$(x,\ y,\ z+t)$,$(x,\ y,\ z-t)$を頂点とする正八面体を$\alpha_t(\mathrm{P})$,その外部の領域を$\beta_t(\mathrm{P})$で表す.ただし,立方体および正八面体は内部の領域も含むものとする.このとき以下の問いに答えよ.

(1)$0 < t \leqq 1$のとき,$Q$と$\alpha_t(\mathrm{O})$の共通部分$Q \cap \alpha_t(\mathrm{O})$の体積を$t$で表せ.
(2)$Q \cap \beta_1(\mathrm{O}) \cap \beta_1(\mathrm{D}) \cap \beta_1(\mathrm{E}) \cap \beta_1(\mathrm{F})$の体積を求めよ.
(3)$\displaystyle \frac{1}{2} < t \leqq 1$のとき,$Q \cap \alpha_t(\mathrm{O}) \cap \alpha_t(\mathrm{A})$の体積を$t$で表せ.
(4)$t$が$0<t \leqq 1$の範囲で変化するとき,$Q \cap \alpha_t(\mathrm{O}) \cap \beta_t(\mathrm{A}) \cap \beta_t(\mathrm{B}) \cap \beta_t(\mathrm{C})$の体積が最大となる$t$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第1問
$a,\ b,\ c$を相異なる正の実数とするとき,以下の各問いに答えよ.

(1)次の$2$数の大小を比較せよ.
\[ a^3+b^3,\ a^2b+b^2a \]
(2)次の$4$数の大小を比較し,小さい方から順に並べよ.
\begin{eqnarray}
& & (a+b+c)(a^2+b^2+c^2),\quad (a+b+c)(ab+bc+ca), \nonumber \\
& & 3(a^3+b^3+c^3),\quad 9abc \nonumber
\end{eqnarray}
(3)$x,\ y,\ z$を正の実数とするとき
\[ \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \]
のとりうる値の範囲を求めよ.
熊本大学 国立 熊本大学 2010年 第1問
関数$y=\sin^3 x-\cos^3 x \ (0 \leqq x \leqq \pi)$について,以下の問いに答えよ.

(1)$\sin x-\cos x = t$とおいて,$t$のとり得る値の範囲を求めよ.
(2)$y$を$t$の式で表せ.
(3)$y$の最大値および最小値を求めよ.
熊本大学 国立 熊本大学 2010年 第4問
原点Oを中心として半径1の円の第1象限の部分$C$について考える.$C$上に3点A$\displaystyle \biggl( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \biggr)$,P$(1,\ 0)$,Q$(0,\ 1)$をとる.$s+t=1$を満たす$s,\ t \ (0<s<1,\ 0<t<1)$に対し,弧AQ上に点Xを2つのベクトル
\[ s^2\, \overrightarrow{\mathrm{OA}}-s\, \overrightarrow{\mathrm{OX}},\quad t\, \overrightarrow{\mathrm{OA}}-t^2\, \overrightarrow{\mathrm{OX}} \]
が垂直になるようにとる.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$\cos \theta$のとり得る値の範囲を求めよ.
(3)$\triangle$OAXの面積の最大値を求めよ.
福井大学 国立 福井大学 2010年 第1問
空間内に4点O,A,B,Cがあり,$\text{OA}=\text{OB}=\sqrt{5},\ \text{OC}=1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくと,$\overrightarrow{a} \cdot \overrightarrow{b}=4,\ \overrightarrow{b} \cdot \overrightarrow{c}=1$が成り立っている.2点A,Cから直線OBにそれぞれ垂線を下ろし,直線OBとの交点をD,Eとする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{DA}},\ \overrightarrow{\mathrm{EC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$のとりうる値の範囲を求めよ.
(3)4点O,A,B,Cが同一平面上にない場合,四面体OABCの体積が最大になるときの$\overrightarrow{a} \cdot \overrightarrow{c}$の値と体積の最大値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第3問
関数$f(t)=2(\cos t-\sin t),\ g(t)=\cos t+\sin t$を用いて媒介変数表示された,$xy$平面上の曲線$C:x=f(t),\ y=g(t)$がある.点A$\displaystyle \left( \frac{3}{4},\ \frac{3}{2} \right)$から$C$上の点P$(f(t),\ g(t))$までの距離APの2乗$\text{AP}^2$を$h(t)$とおく.

(1)$\displaystyle \frac{d}{dt}h(t)=0$となる$t$の値を$0 \leqq t \leqq 2\pi$の範囲ですべて求めよ.
(2)$C$は楕円であることを示せ.
(3)Pが$C$上を動くとき,APを最小にするPの座標,およびAPを最大にするPの座標を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。