タグ「範囲」の検索結果

121ページ目:全1424問中1201問~1210問を表示)
北海道文教大学 私立 北海道文教大学 2011年 第2問
$x$の$2$次方程式$x^2+(1-2k)x+k^2-2k=0$に解$\alpha,\ \beta (\alpha<\beta)$があるとき,$\alpha<0$かつ$1<\beta$であるような$k$の値の範囲を求めなさい.
北海道文教大学 私立 北海道文教大学 2011年 第3問
$a$を定数とし,$2$次関数$y=x^2+6x+a+7$のグラフを$C$とする.以下の問いに答えなさい.

(1)$C$の頂点の座標を求めなさい.
(2)$-1 \leqq x \leqq 3$における最小値が$-1$のとき,$a$の値を求めなさい.
(3)$C$が$x$軸と異なる$2$点で交わるとき,$a$の値の範囲を求めなさい.
(4)$(3)$のとき,$C$と$x$軸との交点を$\mathrm{A}$,$\mathrm{B}$とする.$\mathrm{AB}=2 \sqrt{7}$のとき,$a$の値を求めなさい.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
愛知学院大学 私立 愛知学院大学 2011年 第3問
$2$次方程式$x^2+(a-1)x+(a+2)=0$が相異なる$2$つの実数解もつとする.

(1)$a$の値の範囲を求めなさい.
(2)相異なる$2$つの実数解がどちらも正であるとき,$a$の値の範囲を求めなさい.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第1問
$k$を定数とする.方程式$x^2-|x|-6=k$を満足する実数$x$がちょうど$3$個あるのは$k=[ ]$のときであり,この方程式を満足する実数$x$が存在しないのは$k$の範囲が$[ ]$のときである.
中部大学 私立 中部大学 2011年 第2問
$0<\theta<\pi$における関数$y=\sin^2 \theta+\cos \theta$の最大値を考える.

(1)$t=\cos \theta$としたとき,$y$を$t$の式で表せ.また,$t$のとり得る値の範囲を示せ.
(2)$(1)$で示した範囲を$t$が変化するとき,$y$の最大値と,最大値を与える$\theta$の値を求めよ.
北海道薬科大学 私立 北海道薬科大学 2011年 第3問
関数$f(x)=x^3+ax^2+bx+28$($a,\ b$は定数)がある.曲線$y=f(x)$上の点$(2,\ f(2))$における接線の方程式が$y=15x$であるとき,次の設問に答えよ.

(1)$a$の値は$[ア]$,$b$の値は$[イウ]$である.
(2)$f(x)$は
$x=[エオ]$のとき,極大値$[カキ]$
$x=[ク]$のとき,極小値$[ケコ]$
をとる.
(3)$0 \leqq x \leqq 2$の範囲では,$f(x)$の最大値は$[サシ]$,最小値は$[スセ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第5問
$x$の$2$次方程式$2x^2-2kx+k-3=0$が,$x<0$の範囲と$x>1$の範囲にそれぞれ$1$つずつ解を持つように,定数$k$の値を定めると
\[ [ ]<k<[ ] \]
となる.
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。