タグ「範囲」の検索結果

116ページ目:全1424問中1151問~1160問を表示)
愛媛大学 国立 愛媛大学 2011年 第3問
$0 \leqq x \leqq 1$の範囲で関数$f(x),\ g(x)$を
\[ \begin{array}{l}
f(x)=1-|2x-1| \\
g(x)=1-|2 \abs{2x-1|-1}
\end{array} \]
と定める.

(1)$\displaystyle g \left( \frac{\sqrt{3}}{4} \right)$を求めよ.
(2)$0 \leqq x \leqq 1$の範囲で$y=f(x)$のグラフをかけ.
(3)$0 \leqq x \leqq 1$の範囲で$y=g(x)$のグラフをかけ.
(4)連立不等式
\[ \left\{ \begin{array}{l}
y \geqq f(x) \\
y \leqq g(x) \\
0 \leqq x \leqq \displaystyle\frac{1}{2}
\end{array} \right. \]
の表す領域の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第3問
実数$k$は$\displaystyle \frac{\pi}{3} \leqq k \leqq \frac{\pi}{2}$の範囲にあるとする.
\[ \begin{array}{ll}
f(x)=\int_{-k}^k \sin (x-t) \cos t \, dt & (-k \leqq x \leqq k) \\
g(x)=\int_{-k}^k |\sin (x-t)|\cos t \, dt & (-k \leqq x \leqq k)
\end{array} \]
と定めるとき,以下の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{6} \right)$と$\displaystyle g \left( -\frac{\pi}{6} \right)$,$2$つの定積分の値をそれぞれ求めよ.
(2)差$f(x)-g(x)$は,区間$-k \leqq x \leqq k$で増加することを示せ.
(3)曲線$y=g(x)$の変曲点は何個あるか,調べよ.
防衛大学校 国立 防衛大学校 2011年 第1問
関数$f(x)=4^x-2^{x+3}-2^{-x+3}+4^{-x} (x \geqq 0)$について,次の問に答えよ.

(1)$2^x+2^{-x}=t$とおくとき,$f(x)$を$t$の式で表せ.
(2)$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最小値$m$とそのときの$x$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第1問
$3$次関数$f(x)$を$f(x)=x^3-4x$で定める.このとき,次の問に答えよ.

(1)関数$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)点$(1,\ 4)$を通る直線と$y=|f(x)|$のグラフが,$x>0$の範囲において$2$個の共有点をもつという.このような直線をすべて求めよ.ただし,直線の傾きは負とする.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 (m>0)$が,点$\mathrm{A}(5,\ 3)$を中心とする円$C_1$に接している.その接点を$\mathrm{P}$とする.直線$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線$\ell_2$と$x$軸との交点を$\mathrm{R}$とする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる$2$点で交わるような$m$の値の範囲を求めなさい.
(3)線分$\mathrm{QR}$の中点$\mathrm{S}$の座標を求めなさい.
(4)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
愛媛大学 国立 愛媛大学 2011年 第5問
関数$f(x)=\cos x-x \sin x,\ g_n(x)=(x+n \pi)\sin x-\cos x \ (n=1,\ 2,\ 3,\ \cdots)$について,次の問いに答えよ.ただし,必要があれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たすすべての$x$について$\tan x>x$が成り立つことを用いてよい.

(1)すべての自然数$n$,実数$x$に対して$g_n(x)=(-1)^{n+1}f(x+n \pi)$が成り立つことを示せ.
(2)自然数$n$に対して,方程式$g_n(x)=0$は$0 \leqq x \leqq \pi$の範囲においてただ$1$つの解をもつことを示せ.
(3)(2)におけるただ$1$つの解を$x_n$とする.$x_n$は$\displaystyle 0<x_n<\frac{1}{n\pi}$を満たすことを示せ.
(4)$y_n=n\pi+x_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.定積分
\[ S_n=\int_{y_n}^{y_{n+1}}|f(x)| \, dx \]
を,$n,\ x_n$および$x_{n+1}$を用いて表せ.
(5)極限$\displaystyle \lim_{n \to \infty}\frac{S_n}{n}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第4問
$xy$-平面上の原点を$\mathrm{O}$とし,楕円$\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>b>0)$を$E$とする.$E$上の点$\mathrm{P}(s,\ t)$における$E$の法線と$x$軸との交点を$\mathrm{Q}$とする.点$\mathrm{P}$が$s>0,\ t>0$の範囲を動くとき,$\angle \mathrm{OPQ}$が最大になる点$\mathrm{P}$を求めよ.
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。