タグ「範囲」の検索結果

111ページ目:全1424問中1101問~1110問を表示)
熊本大学 国立 熊本大学 2011年 第2問
平行六面体$\mathrm{OADB}$-$\mathrm{CEGF}$において,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{AD}$を$2:3$に内分する点を$\mathrm{N}$,辺$\mathrm{DG}$を$1:2$に内分する点を$\mathrm{L}$とする.また,辺$\mathrm{OC}$を$k:1-k \ (0<k<1)$に内分する点を$\mathrm{K}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,$\overrightarrow{\mathrm{MN}}$,$\overrightarrow{\mathrm{ML}}$,$\overrightarrow{\mathrm{MK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)3点$\mathrm{M}$,$\mathrm{N}$,$\mathrm{K}$の定める平面上に点$\mathrm{L}$があるとき,$k$の値を求めよ.
(3)3点$\mathrm{M}$,$\mathrm{N}$,$\mathrm{K}$の定める平面が辺$\mathrm{GF}$と交点をもつような$k$の値の範囲を求めよ.

(図は省略)
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 \ (m>0)$が,点A$(5,\ 3)$を中心とする円$C_1$に接している.その接点をPとする.直線$\ell_1$と$y$軸との交点をQ,2点A,Pを通る直線$\ell_2$と$x$軸との交点をRとする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる2点で交わるような$m$の値の範囲を求めなさい.
(3)線分QRの中点Sの座標を求めなさい.
(4)3点P,Q,Rを通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
千葉大学 国立 千葉大学 2011年 第13問
$a,\ b,\ c$は実数とし,
\[ f(x) = x^4+bx^2+cx+2 \]
とおく.さらに$4$次方程式$f(x)=0$は異なる$2$つの実数解$\alpha,\ \beta$と$2$つの虚数解をもち,
\[ \alpha+\beta=-(a+1),\quad \alpha\beta=\frac{1}{a} \]
を満たすと仮定する.

(1)$b,\ c$を$a$を用いて表せ.
(2)$a$のとり得る値の範囲を求めよ.
(3)$b$のとり得る値の範囲を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第2問
座標平面において,原点をOとし,次のような3点P,Q,Rを考える.

\mon[(a)] 点Pは$x$軸上にあり,その$x$座標は正である.
\mon[(b)] 点Qは第1象限にあって,$\text{OQ}=\text{QP}=1$を満たす.
\mon[(c)] 点Rは第1象限にあって,$\text{OR}+\text{RP}=2$を満たし,かつ線分RPが$x$軸に垂直となる.

ただし,座標軸は第1象限に含めないものとする.このとき以下の各問いに答えよ.

(1)上の条件を満たす2点Q,Rが存在するような,点Pの$x$座標が取りうる値の範囲を求めよ.
(2)(1)の範囲を点Pが動くとき,線分QRが通過する領域を図示し,その面積を求めよ.
(3)線分OPの中点をMとする.(1)の範囲を点Pが動くとき,四角形MPRQの面積を最大にする点Pの$x$座標を求めよ.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)定数$a,\ b$を用いて,$\sin \theta+\cos \theta$を$a\sin (\theta+b)$の形に表せ.ただし,$a>0, 0 \leqq b < 2\pi$とする.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta + \cos \theta$の最大値と最小値を求めよ.
(3)$t=\sin \theta + \cos \theta$とおくとき,$\sin \theta \cdot \cos \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta \cdot \cos \theta$の最大値と最小値を求めよ.
(4)$t=\sin \theta + \cos \theta$とおくとき,$\sin^3 \theta + \cos^3 \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin^3 \theta + \cos^3 \theta$の最大値と最小値を求めよ.
佐賀大学 国立 佐賀大学 2011年 第2問
多項式$f(x)=x^4-x^3+cx^2-11x+d$について,$f(1+\sqrt{2})=0$が成り立つとする.ここで,$c,\ d$は有理数とする.次の問いに答えよ.

(1)$S=\{a+\sqrt{2}b \;|\; a,\ b \text{は有理数} \}$とする.集合$S$の元$z=a+\sqrt{2}b \ $(ただし,$a,\ b$は有理数)に対して,$j(z)=a-\sqrt{2}b$と定義する.$S$の任意の元$z,\ w$に対して,$j(z+w)=j(z)+j(w)$および$j(zw)=j(z)j(w)$が成り立つことを示せ.
(2)(1)を用いて,$S$の元$z$が$f(z)=0$を満たせば,$f(j(z))=0$が成り立つことを示せ.このことを用いて,$f(1-\sqrt{2})=0$を示せ.
(3)有理数$c,\ d$を求め,$f(x)$を有理数の範囲で因数分解せよ.
佐賀大学 国立 佐賀大学 2011年 第3問
$xy$平面上の原点をOとし,放物線$y=k-x^2$を$C$とする.ただし,$k$は$\displaystyle \frac{1}{2}$より大きい定数とする.$C$上の点P$(t,\ k-t^2)$が$t \geqq 0$の範囲で動くときOPの長さが最小となるPをP$_0$とおく.

(1)P$_0$の座標を求めよ.
(2)OとP$_0$を通る直線と,P$_0$における$C$の接線が直交することを示せ.
(3)OとP$_0$を通る直線の傾きが1のとき,$k$の値を求めよ.
(4)OとP$_0$を通る直線の傾きが1のとき,$xy$平面の第1象限にあって,$x$軸,$y$軸および放物線$C$に接する円のうち小さい方の半径を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第4問
原点から曲線$C:y=e^{2x}$へひいた接線と$C$との接点をP$(a,\ b)$とするとき,以下の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)点$(0,\ 1)$から点Pまで曲線$C$に沿って点Qが動く.$C$の点Qにおける接線を$\ell$,点Pから$x$軸に下ろした垂線と$\ell$との交点をHとし,Qの$x$座標を$t$とする.$0 \leqq x \leqq a$の範囲で曲線$C$より下,かつ,直線$\ell$より上の部分の面積を$S(t)$とするとき,$0<t<a$における$S(t)$の最小値と,そのときの$t$の値を求めよ.
大分大学 国立 大分大学 2011年 第4問
直線$\ell_1:y=mx+3 \ (m>0)$が,点A$(5,\ 3)$を中心とする円$C_1$に接している.その接点をPとする.直線$\ell_1$と$y$軸との交点をQ,2点A,Pを通る直線$\ell_2$と$x$軸との交点をRとする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる2点で交わるような$m$の値の範囲を求めなさい.
(3)線分QRの中点Sの座標を求めなさい.
(4)3点P,Q,Rを通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。