タグ「範囲」の検索結果

102ページ目:全1424問中1011問~1020問を表示)
関西学院大学 私立 関西学院大学 2012年 第3問
$a$は$a>2$を満たす実数とする.$f(x)=x^3-a^2x$,$g(x)=-x^2+a^2$とおく.次の問いに答えよ.

(1)$xy$平面において,$y=f(x)$のグラフと$y=g(x)$のグラフは$3$つの共有点をもつことを示し,$3$つの共有点の座標をすべて求めよ.
(2)$y=f(x)$のグラフと$y=g(x)$のグラフの$3$つの共有点を,$x$座標の小さいほうから順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.点$\mathrm{B}$における$y=f(x)$の接線を$\ell$とし,$\ell$と$y=g(x)$のグラフとの共有点のうち点$\mathrm{B}$以外の点を$\mathrm{D}$とする.直線$\ell$の方程式と点$\mathrm{D}$の座標を求めよ.
(3)$y=g(x)$のグラフと直線$\ell$で囲まれ,$x \geqq 0$の範囲にある部分の面積を求めよ.
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)実数$x$が不等式${(\log_2 x)}^2-\log_2 (4x)<0$を満たすとする.このとき,$\log_2 x$の範囲は
\[ [ア]<\log_2 x<[イ] \]
であるから,$x$の範囲は
\[ [ウ]<x<[エ] \]
である.
(2)数列$2,\ 3,\ 0,\ 9,\ -18,\ 63,\ -180,\ \cdots$を$\{a_n\}$とするとき,$\{a_n\}$の階差数列$\{b_n\}$は初項$[オ]$,公比$[カ]$の等比数列である.したがって,$\{a_n\}$の一般項は$a_n=[キ]$である.
(3)円$C$上に頂点をもつ正$8$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_8$の頂点から異なる$3$点を選び,それらを結んで三角形を作る.三角形の作り方は全部で$[ク]$通りある.これらの三角形のうち一辺が円$C$の直径になるものは$[ケ]$個ある.また二等辺三角形になるものは$[コ]$個ある.
千葉工業大学 私立 千葉工業大学 2012年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3 \sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=[ア]+\sqrt{[イウ]}$である.
(2)整式$x^3-4x^2+7x+1$を$x^2-3x+2$で割った余りは$[エ]x+[オ]$である.
(3)$\displaystyle 3^{2x} \leqq \frac{9}{{27}^x}$をみたす$x$の範囲は$\displaystyle x \leqq \frac{[カ]}{[キ]}$である.
(4)直線$2x+3y+5=0$と点$(-4,\ 1)$において垂直に交わる直線の方程式は$\displaystyle y=\frac{[ク]}{[ケ]}x+[コ]$である.
(5)円$x^2+y^2=9$と円$x^2+(y+a)^2=9$が共有点をもつような定数$a$の値の範囲は$[サシ] \leqq a \leqq [ス]$である.
(6)$\overrightarrow{a}=(k,\ -2k,\ 5)$が$\overrightarrow{b}=(1,\ -2,\ -2)$に垂直であるとき,$k=[セ]$であり,$|\overrightarrow{a}|=[ソ] \sqrt{[タ]}$である.
(7)$1$個のサイコロを振り,出た目を$4$で割った余りを$X$とする.$X=1$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,また,$X$の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
(8)関数$\displaystyle f(x)=\frac{1}{3}x^3-ax^2+3x+1$($a$は定数)が$x=3$で極値をとるとき,$a=[ナ]$であり,極大値は$\displaystyle \frac{[ニ]}{[ヌ]}$である.
大阪学院大学 私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.

(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
近畿大学 私立 近畿大学 2012年 第3問
$p$を実数の定数として,実数$x$の関数を$\displaystyle f(x)={25}^x+\frac{1}{{25}^x}+2p \left( 5^x+\frac{1}{5^x}-1 \right)+7$とする.$\displaystyle t=5^x+\frac{1}{5^x}$とおき,$f(x)$を$t$で表した関数を$g(t)$とおく.

(1)関数$g(t)$を求めよ.
(2)方程式$g(t)=0$が実数解を$1$個もつとき,$p$の値と解$t$の値を求めよ.
(3)方程式$g(t)=0$が次の条件をみたす$2$個の実数解$t_1,\ t_2$をもつとき,$p$がとりうる値の範囲をそれぞれ求めよ.
\[ (ⅰ) t_1<2,\ t_2>2 \quad (ⅱ) t_1=2,\ t_2>2 \quad (ⅲ) 2<t_1<t_2 \quad \tokeishi t_1<t_2<2 \]
(4)$t$を定数とみなし$\displaystyle t=5^x+\frac{1}{5^x}$を$x$の方程式とみなして,方程式$\displaystyle t=5^x+\frac{1}{5^x}$が異なる$2$つの実数解$x$をもつように$t$の値を定めるとき,$t$がとりうる値の範囲を求めよ.
(5)方程式$f(x)=0$の異なる実数解$x$の個数を,$p$の値で場合分けして求めよ.
吉備国際大学 私立 吉備国際大学 2012年 第3問
最大値が$7$で,そのグラフが$2$点$(0,\ 3)$,$(4,\ 3)$を通る$2$次関数がある.

(1)この関数の式を求めよ.
(2)この関数と$x$軸との交点の距離を求めよ.
(3)この関数のグラフを,$-3<x<6$の範囲でできるだけ詳しく図示しなさい.
吉備国際大学 私立 吉備国際大学 2012年 第1問
次の( \quad )を埋めよ.

(1)$x^4-3x^2y^2+y^4$を因数分解すると$( ① )$となる.
(2)$1$個のサイコロを$5$回投げるとき,素数の目がちょうど$4$回出る確率は$( ② )$である.
(3)$x$の$2$次方程式$(a-3)x^2+2(a+3)x+a+5=0$が実数解をもつとき,定数$a$の値の範囲は$( ③ )$である.
(4)$360$の正の約数の個数は$( ④ )$,その総和は$( ⑤ )$.
北海道科学大学 私立 北海道科学大学 2012年 第4問
$x$の$2$次方程式$x^2+2(k+1)x+k^2-5=0$について以下の問いに答えよ.

(1)$k=0$のとき,この方程式の解は$x=[$1$]$である.
(2)この方程式が実数解を持つときの$k$の値の範囲は$[$2$]$である.
北海道科学大学 私立 北海道科学大学 2012年 第5問
$x$の$2$次方程式$x^2-2ax-a+6=0$が異なる$2$つの正の解をもつとき,定数$a$の値の範囲は$[$1$]<a<[$2$]$である.
大同大学 私立 大同大学 2012年 第5問
$\displaystyle f(x)=\sin 2x \log (2 \sin x) \left( \frac{\pi}{12} \leqq x \leqq \frac{3}{4} \pi \right)$とする.

(1)不定積分$\displaystyle \int t \log t \, dt$を求めよ.
(2)$2 \sin x=t$とおいて置換積分することにより,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$f(x) \geqq 0$をみたす$x$の範囲を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれる部分の面積を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。