タグ「等辺」の検索結果

1ページ目:全3問中1問~10問を表示)
中部大学 私立 中部大学 2012年 第4問
$\mathrm{AB}=\mathrm{AC}$である$2$等辺三角形$\mathrm{ABC}$の内接円の半径は$1$である.次の問いに答えよ.
(図は省略)

(1)$\angle \mathrm{ABC}=\theta$とする.$\triangle \mathrm{ABC}$の面積$S$を$\theta$で表せ.
(2)$S$の最小値を求めよ.
旭川医科大学 国立 旭川医科大学 2011年 第1問
$\triangle \mathrm{ABC}$は$\mathrm{AB}=\mathrm{AC}$の$2$等辺三角形とする.$\mathrm{D}$を辺$\mathrm{BC}$上の点とし,$\mathrm{AD}$の延長線が$\triangle \mathrm{ABC}$の外接円と交わる点を$\mathrm{P}$とする.次の問いに答えよ.

(1)$\mathrm{AP}=\mathrm{BP}+\mathrm{CP}$であるとき,$\triangle \mathrm{ABC}$は正三角形であることを示せ.
(2)$\displaystyle \frac{1}{\mathrm{BP}}+\frac{1}{\mathrm{CP}}=\frac{1}{\mathrm{DP}}$であるとき,$\triangle \mathrm{ABC}$は正三角形であることを示せ.
旭川医科大学 国立 旭川医科大学 2011年 第2問
平面上に正三角形でない鋭角三角形$\mathrm{ABC}$が与えられている.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\displaystyle s=\frac{a+b+c}{2}$とおく.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$をそれぞれ$s-c:s-b,\ s-a:s-c,\ s-b:s-a$に内分する点を$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$とする.また,$\mathrm{O}$を原点とする.次の問いに答えよ.

(1)点Nを$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{(s-a)\overrightarrow{\mathrm{OA}}+(s-b)\overrightarrow{\mathrm{OB}}+(s-c)\overrightarrow{\mathrm{OC}}}{s}$と定義するとき,$3$直線$\mathrm{AX}$,$\mathrm{BY}$,$\mathrm{CZ}$は$\mathrm{N}$で交わることを示せ.
(2)$\mathrm{P}$を$\triangle \mathrm{ABC}$の内部の点,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$,$\triangle \mathrm{PAB}$の面積をそれぞれ$S_A,\ S_B,\ S_C$とするとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{S_A\overrightarrow{\mathrm{OA}}+S_B\overrightarrow{\mathrm{OB}}+S_C\overrightarrow{\mathrm{OC}}}{S_A+S_B+S_C} \]
と表される.このことを用いて,$\triangle \mathrm{ABC}$の外心を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$,$a$,$b$,$c$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.点$\mathrm{N}$が$\mathrm{Q}$と$\mathrm{G}$を通る直線上にあるとき,$\triangle \mathrm{ABC}$は$2$等辺三角形であることを示せ.
スポンサーリンク

「等辺」とは・・・

 まだこのタグの説明は執筆されていません。