タグ「等比数列」の検索結果

7ページ目:全103問中61問~70問を表示)
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第2問
$a,\ b,\ c$は相異なる実数で,$abc=-27$を満たしている.さらに,$a,\ b,\ c$はこの順で等比数列であり,$a,\ b,\ c$の順序を適当に変えると等差数列になる.このとき,$a,\ b,\ c$を求めよ.
法政大学 私立 法政大学 2012年 第2問
$2$つの数列$\{a_n\},\ \{b_n\}$は,つぎの関係式を満たす.
\[ \begin{array}{ll}
a_1=5, & a_{n+1}=4a_n+3b_n, \\
b_1=1, & b_{n+1}=3a_n+kb_n
\end{array} \quad (n \geqq 1) \]
すべての$n$に対し$a_n-b_n$が一定の値であるとき,つぎの問いに答えよ.

(1)$k$の値を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$c_n=a_n+lb_n$とする.$\{c_n\}$が等比数列となる正の整数$l$を求めよ.また,この$\{c_n\}$に対し,$\displaystyle S_n=\sum_{k=1}^n c_k$を求めよ.
西南学院大学 私立 西南学院大学 2012年 第4問
等比数列$\{a_n\}$について,$a_{10}=40$,$\displaystyle a_{15}=\frac{5}{4}$であるとき,以下の問に答えよ.ただし,$a_n$はすべて実数である.

(1)公比は$\displaystyle \frac{[ヌ]}{[ネ]}$である.

(2)$\displaystyle \sum_{n=15}^{19}a_n=\frac{[ノハヒ]}{[フヘ]}$である.

(3)$a_n<10^{-3}$を満たす最小の$n$は,$n=[ホマ]$である.ただし,$\log_{10}2=0.301$として計算せよ.
東京理科大学 私立 東京理科大学 2012年 第3問
$\{\theta_k\}$を初項$0$,交差$\displaystyle \frac{\pi}{4}$の等差数列,$\{r_k\}$を初項$1$,公比$\displaystyle \frac{1}{2}$の等比数列とし,自然数$k$に対して,行列$A_k$,$B_k$を
\[ A_k=\left( \begin{array}{cc}
r_k \cos \theta_k & r_k \sin \theta_k \\
r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right),\quad B_k=\left( \begin{array}{cc}
r_k \cos \theta_k & -r_k \sin \theta_k \\
-r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right) \]
とおく.$C_k=A_kA_{k+1}$,$D_k=B_k B_{k+1}$とするとき,次の問いに答えよ.

(1)$C_k$を$k$を用いて表せ.
(2)$D_k$を$k$を用いて表せ.
(3)$m$を自然数とするとき,次の行列の和
\[ \left( \frac{1}{r_kr_{k+1}}C_k \right)^2+\left( \frac{1}{r_kr_{k+1}}C_k \right)^4+\left( \frac{1}{r_kr_{k+1}} C_k \right)^6+\cdots +\left( \frac{1}{r_kr_{k+1}}C_k \right)^{2m} \]
を求めよ.
(4)$C_k^2D_k^2$を求めよ.
(5)次の行列の和
\[ C_1^2D_1^2+2C_2^2D_2^2+3C_3^2D_3^2+\cdots +nC_n^2D_n^2 \]
を$\left( \begin{array}{cc}
x_n & y_n \\
z_n & w_n
\end{array} \right)$とするとき,$\displaystyle \lim_{n \to \infty}x_n$,$\displaystyle \lim_{n \to \infty}y_n$,$\displaystyle \lim_{n \to \infty}z_n$,$\displaystyle \lim_{n \to \infty}w_n$を求めよ.
ただし,必要ならば,実数$a (a>1)$に対して,$\displaystyle \lim_{n \to \infty} \frac{n}{a^n}=0$が成り立つことを用いてよい.
東京理科大学 私立 東京理科大学 2012年 第1問
以下の問いに答えよ.

(1)$a_1=1$,$\displaystyle a_{n+1}=4a_n+\left( \frac{1}{3} \right)^n (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$を考える.$\alpha$を定数として
\[ b_n=a_n+\alpha \left( \frac{1}{3} \right)^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと$\displaystyle \alpha=\frac{[ア]}{[イ][ウ]}$のとき,$\{b_n\}$は初項$\displaystyle \frac{[エ][オ]}{[カ][キ]}$,公比$[ク]$である等比数列となる.これより
\[ a_n=\frac{[ケ]}{[コ][サ]} \left( [シ]^n-\left( \frac{[ス]}{[セ]} \right)^n \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
(2)$a_1=1$である数列$\{a_n\}$が$5^{n+1}a_{n+1}+24a_{n+1}a_n-5^na_n=0 (n=1,\ 2,\ 3,\ \cdots)$を満たしているとき
\[ a_n=\frac{[ソ]^{n-1}}{[タ] \cdot [チ][ツ]^{n-1}-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
広島工業大学 私立 広島工業大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$において,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3},\ \angle \mathrm{B}=\frac{\pi}{4},\ \mathrm{AB}=6 \sqrt{2}$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(2)空間のベクトル$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$がある.$\overrightarrow{a}=(1,\ 2,\ -3)$,$\overrightarrow{b}=(0,\ 1,\ -1)$,$|\overrightarrow{c}|=1$,$\overrightarrow{a} \perp \overrightarrow{c}$,$\overrightarrow{b} \perp \overrightarrow{c}$とするとき,$\overrightarrow{c}$を成分で表せ.
(3)数列$\{a_n\}$は初項が$8$,公差が$14$の等差数列とする.数列$\{b_n\}$は公比が正の等比数列とする.$a_1=2b_1$かつ$a_5=b_5$とするとき,$\{b_n\}$の一般項を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第3問
次の空所を埋めよ.

数列$\{a_n\}$の初項から第$n$項までの和$a_1+a_2+\cdots +a_n$を$S_n$とおく.この$S_n$が関係式$S_n=2a_n-3n (n=1,\ 2,\ \cdots)$をみたすとき,$a_n$の一般項を求めたい.
$S_1=a_1$だから,$a_1=[ア]$であり,同様に,$a_2=[イ]$である.$S_{n+1}=S_n+a_{n+1}$だから,数列$\{a_n\}$は$a_{n+1}=\alpha a_n+\beta$の形の漸化式をみたす.このとき,$\alpha=[ウ]$,$\beta=[エ]$である.数列$\{a_n+\beta\}$は初項$[オ]$,公比$[カ]$の等比数列であるから,数列$\{a_n\}$の一般項は$a_n=[キ]$である.
関西学院大学 私立 関西学院大学 2012年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$a,\ b$は実数とする.$x$についての整式
\[ F(x)=x^3+x^2+ax+b \]
が$x+3$で割り切れるとすると,$b=[ア]$が成り立つ.ただし,$[ア]$は$a$の式である.$b=[ア]$を用いて$F(x)$の式から$b$を消去すると,$F(x)=[イ]$となる.整式$[イ]$を$x+3$で割ったときの商は$[ウ]$である.整式$[ウ]$が,さらに$x+3$で割り切れるとき,$a$の値は$a=[エ]$である.よって,整式$F(x)$が$(x+3)^2$で割り切れるとき,$a$と$b$の値は$a=[エ]$,$b=[オ]$である.
(2)数列$\{a_n\}$は次の条件によって定められるとする.
\[ a_1=1,\quad a_{n+1}=3a_n+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
$a_{n+1}=3a_n+2$は$a_{n+1}+1=[カ](a_n+[キ])$と変形できる.よって$b_n=a_n+[キ] (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は等比数列となり,その一般項は$[ク]$である.よって,数列$\{a_n\}$の一般項は$[ケ]$である.また,$s_1=2$,$s_{n+1}=4s_n+3 (n=1,\ 2,\ 3,\ \cdots)$という条件で定められる数列$\{s_n\}$の一般項は$[コ]$である.
スポンサーリンク

「等比数列」とは・・・

 まだこのタグの説明は執筆されていません。