タグ「等比数列」の検索結果

6ページ目:全103問中51問~60問を表示)
福岡大学 私立 福岡大学 2013年 第3問
第$2$項が$\displaystyle \frac{3}{4}$,第$5$項が$48$であるような等比数列の一般項を求めると$a_n=[ ]$である.また,初項から第$n$項までの和を$S_n$とするとき,$16S_n+1 \geqq 10000$となる最小の整数$n$を求めると$n=[ ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$x$の整式$x^3+3mx^2+2(m^2-1)x-4$が$(x+2)^2$で割り切れるとする.このとき,$m$の値は$m=[ア]$であり,商は$[イ]$である.

(2)行列$A=\left( \begin{array}{cc}
x+1 & 2 \\
-5 & y-2
\end{array} \right)$がある.$A^2=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たすとき,$x$と$y$の値を求めると$(x,\ y)=[ウ]$である.また,$A$が逆行列をもたないような$2$つの正の整数$x$と$y$の値を求めると$(x,\ y)=[エ]$である.
(3)$a$は$1$ではない実数,$k$は$3$以上の整数とする.初項が$a$,第$2$項が$1$の等差数列があり,その第$k$項を$b$とする.$b$を$a$と$k$で表すと$b=[オ]$である.この$b$に対して,初項が$1$,第$2$項が$a$,第$3$項が$b$の数列が等比数列になるとき,$a$を$k$で表すと$a=[カ]$である.
(4)曲線$C:y=\log x$上の点$\mathrm{P}(2,\ \log 2)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{Q}$とする.$\mathrm{P}$における$C$の接線を$\ell$,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$とし,$m$と$x$軸との交点を$\mathrm{R}$とする.このとき,$m$の方程式を求めると$y=[キ]$である.また,$\triangle \mathrm{PQR}$の面積$S$を求めると$S=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の最大値が$6$となる確率は$[ケ]$であり,出た目の最大値と最小値の組が$(6,\ 1)$となる確率は$[コ]$である.
東北工業大学 私立 東北工業大学 2013年 第2問
次の問いに答えよ.

(1)$1,\ 2,\ 3,\ 4,\ 5$の中から異なる$3$個の数字を用いて$3$けたの整数をつくるとき,$300$以上の整数は$[][]$個できる.
(2)$2$個のさいころを同時に投げるとき,目の和が$8$以上になる確率は$\displaystyle \frac{[][]}{12}$である.
(3)第$2$項が$10$,第$7$項が$320$である等比数列がある.この数列の公比は$[][]$であり,第$5$項は$[][]$である.
(4)$2$つのベクトル$\overrightarrow{a}=(\sqrt{6}-\sqrt{2},\ \sqrt{6}+\sqrt{2})$,$\overrightarrow{b}=(\sqrt{3},\ 1)$のなす角は$[][]^\circ$である.
大阪工業大学 私立 大阪工業大学 2013年 第3問
次の空所を埋めよ.

数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n-2 (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$\{a_n\}$の一般項を次のようにして求めよう.
まず,$a_2=[ア]$であり,さらに,$a_{n+2}=3a_{n+1}-2$より
\[ a_{n+2}-a_{n+1}=[イ] \times (a_{n+1}-a_n) \]
が成り立つ.したがって,$b_n=a_{n+1}-a_n$とおくと,数列$\{b_n\}$は初項$[ウ]$,公比$[エ]$の等比数列になり,一般項は$b_n=[オ]$である.
よって,数列$\{a_n\}$の一般項は$a_n=[カ]$である.
広島工業大学 私立 広島工業大学 2013年 第2問
数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=4a_n-n$を満たしている.

(1)$a_1$を求めよ.
(2)$a_{n+1}$を$a_n$を用いて表せ.
(3)$b_n=a_n+c$とおくとき,$\{b_n\}$が等比数列になるように定数$c$の値を決めよ.
(4)$\{a_n\}$の一般項を求めよ.
玉川大学 私立 玉川大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)初項$1$,公比$2$の等比数列の初項から第$10$項までの和は$\kakkofour{ア}{イ}{ウ}{エ}$である.
(2)直線$x+2y+3=0$に垂直で点$(1,\ 3)$を通る直線の傾きを$m$,$y$切片を$b$とするとき
\[ m=[オ],\quad b=[カ] \]
である.
(3)$2$次方程式$3x^2-(3 \sqrt{2}+2)x+3 \sqrt{2}-1=0$の解は
\[ x=[キ],\quad \frac{[ク] \sqrt{[ケ]}-[コ]}{[サ]} \]
である.
(4)不等式$|2x-5| \leqq 4$の解は
\[ \frac{[シ]}{[ス]} \leqq x \leqq \frac{[セ]}{[ソ]} \]
である.
(5)曲線$y=x^3$の$x=2$における接線は,$y=[タチ]x-[ツテ]$である.
(6)$\overrightarrow{a}=(2,\ 0)$,$\overrightarrow{b}=(1,\ 1)$のとき,
\[ |\overrightarrow{a}|=[ト],\quad |\overrightarrow{b}|=\sqrt{[ナ]},\quad \overrightarrow{a} \cdot \overrightarrow{b}=[ニ] \]
である.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)数列$\{a_n\}$を初項$2$,公比$2$の等比数列,数列$\{b_n\}$を初項$2$,公差$2$の等差数列とし,$c_n=a_nb_n$とする.

(i) $a_{10}=[ア]$である.
(ii) $b_n=a_{10}$のとき,$n=[イ]$である.
(iii) 数列$\{c_n\}$の初項から第$n$項までの和を$S_n$とすると,
\[ S_n=4 \left\{ 2^n([ウ])+1 \right\} \]
である.

(2)$x$についての$3$次方程式
\[ x^3+(a-3)x^2+(-2a+b+3)x+a-b-15=0 \]
の$1$つの解が$3+\sqrt{3}i$であるとき,実数の定数$a,\ b$の値は$a=[エ]$,$b=[オ]$で,$3+\sqrt{3}i$以外の解は,$[カ]$と$[キ]$である.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
スポンサーリンク

「等比数列」とは・・・

 まだこのタグの説明は執筆されていません。