タグ「等式」の検索結果

7ページ目:全278問中61問~70問を表示)
奈良女子大学 国立 奈良女子大学 2015年 第3問
$a,\ b$を正の実数とする.$f(x)=x(x+a)(x-b)$とする.区間$-a \leqq x \leqq 0$において曲線$y=f(x)$と$x$軸で囲まれた部分の面積を$S_1$とし,区間$0 \leqq x \leqq b$において曲線$y=f(x)$と$x$軸で囲まれた部分の面積を$S_2$とする.次の問いに答えよ.

(1)$S_1$を$a$と$b$を用いて表せ.
(2)$S_1=S_2$のとき,$a=b$となることを示せ.
(3)$S_1=S_2$のとき,$f(x)$は奇関数となることを示せ.また,$f(x)$が奇関数のとき,$S_1=S_2$となることを示せ.ただし,$f(x)$が奇関数であるとは,どのような$x$の値に対しても等式$f(-x)=-f(x)$が成り立つことである.
筑波大学 国立 筑波大学 2015年 第4問
$f(x)=\log (e^x+e^{-x})$とおく.曲線$y=f(x)$の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と$y$軸の交点の$y$座標を$b(t)$とおく.

(1)次の等式を示せ.
\[ b(t)=\frac{2te^{-t}}{e^t+e^{-t}}+\log (1+e^{-2t}) \]
(2)$x \geqq 0$のとき,$\log (1+x) \leqq x$であることを示せ.
(3)$t \geqq 0$のとき,
\[ b(t) \leqq \frac{2}{e^t+e^{-t}}+e^{-2t} \]
であることを示せ.
(4)$\displaystyle b(0)=\lim_{x \to \infty} \int_0^x \frac{4t}{(e^t+e^{-t})^2} \, dt$であることを示せ.
福島大学 国立 福島大学 2015年 第2問
次の問いに答えなさい.

(1)次の等式が成り立つことを示しなさい.
\[ \cos 3 \theta=4 \cos^3 \theta-3 \cos \theta \]
(2)$\cos {54}^\circ$の値を求めなさい.
(3)頂点と重心との距離が$r$の正五角形の面積を求めなさい.
福島大学 国立 福島大学 2015年 第2問
次の問いに答えなさい.

(1)次の等式が成り立つことを示しなさい.
\[ \cos 3 \theta=4 \cos^3 \theta-3 \cos \theta \]
(2)$\cos {54}^\circ$の値を求めなさい.
(3)頂点と重心との距離が$r$の正五角形の面積を求めなさい.
福島大学 国立 福島大学 2015年 第5問
次の問いに答えなさい.

(1)関数$f(x)$が
\[ f(x)=x^2+\int_0^\pi f(t) \sin t \, dt \]
をみたすとき,$f(x)$を求めなさい.
(2)等式
\[ f(x)=x^2+\int_0^{\frac{\pi}{2}} f(t) \sin t \, dt \]
をみたす関数$f(x)$は存在しないことを示しなさい.
宇都宮大学 国立 宇都宮大学 2015年 第5問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
宇都宮大学 国立 宇都宮大学 2015年 第4問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$\displaystyle a_n=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx (n=1,\ 2,\ 3,\ \cdots)$とおくと,無限級数$\displaystyle \sum_{n=1}^\infty a_n^2$は収束し,その和は$\displaystyle \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, dx$であることが知られている.これを用いて,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}$の和を求めよ.
(2)等式$\displaystyle \frac{1}{x^2(x+1)}=\frac{a}{x}+\frac{b}{x^2}+\frac{c}{x+1}$が$x$についての恒等式となるように,定数$a,\ b,\ c$の値を定めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2(n+1)}$の収束,発散について調べ,収束するときはその和を求めよ.
早稲田大学 私立 早稲田大学 2015年 第4問
$n$は任意の自然数,また,$k=1,\ 2,\ \cdots,\ n$について$a_k$は$0 \leqq a_k \leqq k$を満たす整数である.このとき,以下の問に答えよ.

(1)数学的帰納法により,次の等式を示せ.
\[ 1 \cdot 1!+2 \cdot 2!+\cdots +n \cdot n!=(n+1)!-1 \]
(2)$2015=a_1 \cdot 1!+a_2 \cdot 2!+\cdots +a_n \cdot n!$が成り立っているとき,$n$を求めよ.ただし,$a_n \neq 0$とする.
(3)$(2)$の等式を成立させる$a_1,\ a_2,\ \cdots, a_n$を求め,答のみ記入せよ.
自治医科大学 私立 自治医科大学 2015年 第25問
関数$f(x)$は,等式$\displaystyle f(x)=3x^2 \int_{-1}^1 f(t) \, dt+x \int_0^1 \{f^\prime(t)\}^2 \, dt+\int_0^1 f(t) \, dt$を満たす.$\displaystyle f(0)-\frac{1}{4}$の値を求めよ.$\displaystyle \int_0^1 f(t) \, dt \neq 0$とする.
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。