タグ「等式」の検索結果

26ページ目:全278問中251問~260問を表示)
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第2問
袋の中に$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9$の数字を$1$つずつ書いたカードが$10$枚入っている.袋からカード$1$枚を無作為に取り出して数字を確認したのち,袋にもどす試行を考える.

(1)この試行を$2$回くり返すとする.確認した数字を順に$X_1,\ X_2$とおくとき,等式$X_1+X_2=X_1X_2$が成り立つ確率を求めよ.
(2)この試行を$3$回くり返すとする.確認した数字を順に$X_1,\ X_2,\ X_3$とおくとき,等式$X_1+X_2+X_3=X_1X_2X_3$が成り立つ確率を求めよ.
(3)この試行を$4$回くり返すとする.確認した数字を順に$X_1,\ X_2,\ X_3,\ X_4$とおくとき,等式$X_1+X_2+X_3+X_4=X_1X_2X_3X_4$が成り立つ確率を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第1問
$0$以上の任意の整数$i$に対して,$x$の$i$次式$g_i(x)$を$i=0$のとき$g_0(x)=1$,$i \geqq 1$のとき$\displaystyle g_i(x)=\frac{x(x+1) \cdots (x+i-1)}{i!}$と定義する.

(1)$\displaystyle f(x)=\sum_{i=0}^n a_ix^i$(但し$a_n \neq 0$)を$x$に関する実数係数の$n (\geqq 0)$次式とする.このとき,等式$\displaystyle f(x)=\sum_{i=0}^n c_i \, g_i(x)$が任意の実数$x$について成り立つような実数$c_i$($0 \leqq i \leqq n$,但し$c_n \neq 0$)が一意的に存在することを証明せよ.
(2)$(1)$において,$n>0$のとき等式$\displaystyle f(x)-f(x-1)=\sum_{i=1}^n c_i \, g_{i-1}(x)$が成り立つことを証明せよ.
(3)$F(x) (\neq 0)$を$x$に関する実数係数の$n (\geqq 0)$次式とし,任意の整数$a$に対して$F(a)$が整数であると仮定する.このとき,等式$\displaystyle F(x)=\sum_{i=0}^n d_i \, g_i(x)$が任意の実数$x$について成り立つような整数$d_i$($0 \leqq i \leqq n$,但し$d_n \neq 0$)が一意的に存在することを証明せよ.
大阪大学 国立 大阪大学 2010年 第1問
関数
\[ f(x) = 2\log(1+e^x)-x-\log 2 \]
を考える.ただし,対数は自然対数であり,$e$は自然対数の底とする.

(1)$f(x)$の第2次導関数を$f^{\,\prime\prime}(x)$とする.等式
\[ \log f^{\,\prime\prime}(x) = -f(x) \]
が成り立つことを示せ.
(2)定積分$\displaystyle \int_0^{\log 2} (x-\log 2)e^{-f(x)}\, dx$を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
大阪大学 国立 大阪大学 2010年 第3問
$\ell,\ m,\ n$を3以上の整数とする.等式
\[ \left( \frac{n}{m} - \frac{n}{2}+1 \right)\ell=2 \]
を満たす$\ell,\ m,\ n$の組をすべて求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
信州大学 国立 信州大学 2010年 第4問
実数$a,\ b$は等式
\[ x^4+x^3+x^2+x+1=(x^2+ax+1)(x^2+bx+1) \]
を満たすものとする.次の問に答えよ.

(1)$a+b,\ ab$を求めよ.
(2)複素数$\alpha$が2次方程式$x^2+ax+1=0$の解ならば,$\displaystyle \frac{1}{\alpha}$もこの方程式の解であることを示せ.
(3)2次方程式$x^2+bx+1=0$の解は,(2)の$\alpha$を用いて$\displaystyle \alpha^2,\ \frac{1}{\alpha^2}$と表されることを示せ.
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)すべての実数$x$に対して次の等式を満たす関数$f(x)$を求めよ.
\[ f(x)=\sin^2 x+2\sqrt{2} \int_0^{\frac{\pi}{4}} f(t) \cos t \, dt \]
(2)すべての実数$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=x-\frac{1}{2}\sin 2x+ \int_0^{x} g^{\, \prime}(t) \cos t \, dt \]
ただし,$g(x)$は微分可能で,その導関数$g^{\, \prime}(x)$は連続であるとする.
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)すべての実数$x$に対して次の等式を満たす関数$f(x)$を求めよ.
\[ f(x)=\sin^2 x+2\sqrt{2} \int_0^{\frac{\pi}{4}} f(t) \cos t \, dt \]
(2)すべての実数$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=x-\frac{1}{2}\sin 2x+ \int_0^{x} g^{\, \prime}(t) \cos t \, dt \]
ただし,$g(x)$は微分可能で,その導関数$g^{\, \prime}(x)$は連続であるとする.
香川大学 国立 香川大学 2010年 第1問
$\triangle$ABCにおいて,次の等式が成立することを示せ.

(1)$\displaystyle \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
(2)$\displaystyle \cos A+\cos B+ \cos C=1+ 4\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(3)$\displaystyle \tan A+ \tan B+ \tan C= \tan A \tan B \tan C$
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。