タグ「等式」の検索結果

14ページ目:全278問中131問~140問を表示)
北九州市立大学 公立 北九州市立大学 2014年 第2問
以下の問いの空欄$[タ]$~$[ノ]$に適する数値,式を記せ.

(1)$i$を虚数単位として,等式$(2+i)(x-3yi)=1-i$を満たす実数$x$および$y$の値を求めると$x=[タ]$,$y=[チ]$となる.
(2)平面上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(3,\ -1)$と直線$x-2y-2=0$がある.この直線上に点$\mathrm{P}$をとるとき,$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$([ツ],\ [テ])$となる.
(3)$0 \leqq \theta<2\pi$の条件で,関数$y=\cos 2\theta-4 \sin \theta$の最大値と最小値を求めると,$\theta=[ト]$のときに最大値$[ナ]$をとり,$\theta=[ニ]$のときに最小値$[ヌ]$をとる.
(4)不等式$9^x \leqq 6+3^x$の解は$[ネ]$である.
(5)$3$つの数$x-3,\ x+1,\ x+6$がこの順で等比数列となるとき,$x$の値を求めると$x=[ノ]$となる.
埼玉大学 国立 埼玉大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)$を区間$0 \leqq x \leqq 1$で定義された連続関数とする.次の等式が成り立つことを示せ.
\[ \int_0^\pi xf(\sin x) \, dx=\frac{\pi}{2}\int_0^\pi f(\sin x) \, dx \]
(2)$a>1$とする.(1)を用いて,積分
\[ \int_0^\pi \frac{x(a^2-4 \cos^2 x)\sin x}{a^2-\cos^2 x} \, dx \]
を求めよ.
岡山大学 国立 岡山大学 2013年 第2問
等式
\[ |x-3|+|y|=2(|x+3|+|y|) \]
を満たす$xy$平面上の点$(x,\ y)$からなる図形を$T$とする.

(1)点$(a,\ b)$が$T$上にあれば,点$(a,\ -b)$も$T$上にあることを示せ.
(2)$T$で囲まれる領域の面積を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
$a$と$b$を実数とする.$2$次正方行列
\[ X=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) \]
の逆行列が存在するとし,$A$を等式
\[ AX=\left( \begin{array}{cc}
-2a & -2b \\
-2b & 2a
\end{array} \right) \]
を満たす$2$次正方行列とする.このとき,次の問いに答えよ.

(1)$X^{-1}AX$を求めよ.
(2)$n$が正の偶数のとき,$A^n$を求めよ.
(3)$n$が正の偶数のとき,$(A^{-1})^n$を求めよ.
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to 0}\frac{x \sin x}{1-\cos x}$を求めよ.
(2)等式$\displaystyle (x+yi)^2=\frac{1+\sqrt{3}i}{2}$を満たす実数$x,\ y$を求めよ.ただし,$i$は虚数単位を表す.
(3)すべての実数$x$に対し,$x^3+2x^2+3x+4=a(x-10)^3+b(x-10)^2+c(x-10)+d$となるような定数$a,\ b,\ c,\ d$を求めよ.
佐賀大学 国立 佐賀大学 2013年 第2問
$\displaystyle a_n=\frac{1}{2^n} \tan \frac{1}{2^n} \ (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,次の問に答えよ.

(1)$\displaystyle 0<\theta<\frac{\pi}{4}$のとき,等式$\displaystyle \frac{1}{2}\tan \theta=\frac{1}{2 \tan \theta}-\frac{1}{\tan 2\theta}$を示せ.
(2)(1)を用いて,和$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(3)無限級数$\displaystyle \sum_{k=1}^\infty a_k$の和を求めよ.
佐賀大学 国立 佐賀大学 2013年 第1問
$\displaystyle a_n=\frac{1}{2^n} \tan \frac{1}{2^n} \ (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,次の問に答えよ.

(1)$\displaystyle 0<\theta<\frac{\pi}{4}$のとき,等式$\displaystyle \frac{1}{2}\tan \theta=\frac{1}{2 \tan \theta}-\frac{1}{\tan 2\theta}$を示せ.
(2)(1)を用いて,和$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(3)無限級数$\displaystyle \sum_{k=1}^\infty a_k$の和を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
新潟大学 国立 新潟大学 2013年 第4問
1次関数$f(x)=px+q$に対して,$x$の係数$p$と定数項$q$を成分にもつベクトル$(p,\ q)$を$\overrightarrow{f}$とする.つまり,$\overrightarrow{f}=(p,\ q)$とする.次の問いに答えよ.

(1)定積分
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (kx+l)(mx+n) \, dx \]
を求めよ.ただし,$k,\ l,\ m,\ n$は定数である.
(2)2つの1次関数$g(x)$と$h(x)$に対して,等式
\[ \frac{1}{2 \sqrt{3}} \int_{-\sqrt{3}}^{\sqrt{3}} g(x)h(x) \, dx=\overrightarrow{g} \cdot \overrightarrow{h} \]
が成り立つことを示せ.ただし,$\overrightarrow{g} \cdot \overrightarrow{h}$はベクトル$\overrightarrow{g}$,$\overrightarrow{h}$の内積を表す.
(3)等式
\[ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)^2 \, dx \int_{-\sqrt{3}}^{\sqrt{3}} \{g(x)\}^2 \, dx=\left\{ \int_{-\sqrt{3}}^{\sqrt{3}} (2x+1)g(x) \, dx \right\}^2 \]
を満たし,$g(0)=-2$であるような1次関数$g(x)$を求めよ.
静岡大学 国立 静岡大学 2013年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の長さを$1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=k$とする.このとき,辺$\mathrm{OB}$上の点$\mathrm{Q}$に関して,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$のとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$かつ$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$のとき,等式$9s^2-6ks+2k-1=0$が成り立つことを示せ.
(3)$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$を満たす点$\mathrm{Q}$が辺$\mathrm{OB}$上にただ$1$つ存在するような$k$の値の範囲を求めよ.ただし,点$\mathrm{Q}$が辺$\mathrm{OB}$上に存在するとは,$\mathrm{Q}$が$\mathrm{O}$または$\mathrm{B}$と一致する場合を含むものとする.
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。