タグ「等式」の検索結果

1ページ目:全278問中1問~10問を表示)
東北大学 国立 東北大学 2016年 第2問
以下の問いに答えよ.

(1)$6$以上の整数$n$に対して不等式
\[ 2^n>n^2+7 \]
が成り立つことを数学的帰納法により示せ.
(2)等式
\[ p^q=q^p+7 \]
を満たす素数の組$(p,\ q)$をすべて求めよ.
山口大学 国立 山口大学 2016年 第4問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
室蘭工業大学 国立 室蘭工業大学 2016年 第3問
$a,\ b,\ c,\ m$を整数とする.

(1)$a-b$と$b-c$がともに$m$の倍数ならば,$a-c$も$m$の倍数であることを示せ.
(2)等式
\[ a^{n+1}-b^{n+1}=a^n(a-b)+b(a^n-b^n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を利用して,すべての自然数$n$に対して$a^n-b^n$は$a-b$の倍数であることを,数学的帰納法により示せ.
(3)$2016$を素因数分解せよ.また,$2^{2016}$を$127$で割った余りを求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第9問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \sin^2 t \, dt$,$\displaystyle \int \sin t \cos t \, dt$,$\displaystyle \int \cos^2 t \, dt$をそれぞれ求めよ.
(2)等式
\[ f(x)=\cos x+\frac{1}{\pi} \int_0^\pi f(t) \cos (t-x) \, dt \]
を満たす$f(x)$を求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.ただし,$\log$は自然対数を表す.また,等式$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.

(2)$a$を正の実数とする.このとき,$a^x=x^a$を満たす正の実数$x$の個数を調べよ.

(3)定積分$\displaystyle \int_1^{\sqrt{e}} \frac{\log x}{x} \, dx$を求めよ.ただし,$e$は自然対数の底である.
静岡大学 国立 静岡大学 2016年 第4問
$\alpha$を絶対値が$1$の複素数とし,等式$z=\alpha^2 \overline{z}$を満たす複素数$z$の表す複素数平面上の図形を$S$とする.ただし,$\overline{z}$は$z$と共役な複素数を表す.このとき,次の各問に答えよ.

(1)$z=\alpha^2 \overline{z}$が成り立つことと,$\displaystyle \frac{z}{\alpha}$が実数であることは同値であることを証明せよ.また,このことを用いて,図形$S$は原点を通る直線であることを示せ.
(2)複素数平面上の点$\mathrm{P}(w)$を直線$S$に関して対称移動した点を$\mathrm{Q}(w^\prime)$とする.このとき,$w^\prime$を$w$と$\alpha$を用いて表せ.
山形大学 国立 山形大学 2016年 第2問
次の問いに答えよ.

(1)次の定積分を求めよ.
\[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{\sin x} \, dx \]
(2)次の定積分を求めよ.
\[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x-\displaystyle\frac{\pi}{2}}{\sin x} \, dx \]
(3)$(1),\ (2)$の結果を用いて次の定積分を求めよ.
\[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{\sin x} \, dx \]
(4)次の定積分を求めよ.
\[ \int_{\frac{1}{e}}^1 \left( 1+\frac{1}{x} \right) \log x \, dx \]
(5)次の等式を満たす関数$f(x)$を求めよ.
\[ f(x)=\sin^2 x+2 \int_0^{\frac{\pi}{2}} f(t) \cos t \, dt \]
筑波大学 国立 筑波大学 2016年 第6問
複素数平面上を動く点$z$を考える.次の問いに答えよ.

(1)等式$|z-1|=|z+1|$を満たす点$z$の全体は虚軸であることを示せ.
(2)点$z$が原点を除いた虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z}$が描く図形は直線から$1$点を除いたものとなる.この図形を描け.
(3)$a$を正の実数とする.点$z$が虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z-a}$が描く図形は円から$1$点を除いたものとなる.この円の中心と半径を求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)$x>1$のとき$\log x<2 \sqrt{x}-2$を示し,これを用いて$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}$を求めよ.ただし,$\log$は自然対数を表す.
(2)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.
(3)定積分$I_n (n=1,\ 2,\ 3,\ \cdots)$を以下で定義する.
\[ I_n=\int_1^e \frac{(\log x)^{n-1}}{x^2} \, dx \]
ただし,$e$は自然対数の底である.このとき,次の等式が成り立つことを示せ.
\[ I_{n+1}=-\frac{1}{e}+nI_n \quad (n=1,\ 2,\ 3,\ \cdots) \quad \cdots \quad (*) \]
(4)等式$(*)$を用いて,関数$\displaystyle y=\frac{\log x}{x}$のグラフと$x$軸および直線$x=e$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
筑波大学 国立 筑波大学 2016年 第3問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき等式
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a}=1 \]
が成り立つとする.$t$は実数の定数で,$0<t<1$を満たすとする.線分$\mathrm{OA}$を$t:1-t$に内分する点を$\mathrm{P}$とし,線分$\mathrm{BC}$を$t:1-t$に内分する点を$\mathrm{Q}$とする.また,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とする.

(1)$\overrightarrow{\mathrm{OM}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$t$を用いて表せ.
(2)線分$\mathrm{OM}$と線分$\mathrm{BM}$の長さが等しいとき,線分$\mathrm{OB}$の長さを求めよ.
(3)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{M}$を中心とする同一球面上にあるとする.このとき,$\triangle \mathrm{OAB}$と$\triangle \mathrm{OCB}$は合同であることを示せ.
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。