タグ「等分」の検索結果

7ページ目:全78問中61問~70問を表示)
早稲田大学 私立 早稲田大学 2011年 第4問
点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$を頂点とする三角形$\mathrm{OAB}$がある.三角形$\mathrm{OAB}$の面積を$2$等分する線分の長さの最大値と最小値を求めよ.
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
自治医科大学 私立 自治医科大学 2011年 第21問
円周を$12$等分し,各点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{J}$,$\mathrm{K}$,$\mathrm{L}$と表記する.$3$つの点を同時に選び,三角形をつくるとき,その三角形が直角二等辺三角形となる確率を$p$とする.$55p$の値を求めよ.ただし,得られた三角形の頂点のアルファベット記号が$1$つでも異なれば,別の三角形とみなすものとする.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$2$次関数$y=x^2+x+k$の$-1 \leqq x \leqq 2$における最大値が$8$であるとき,実数$k$の値は$[ア]$であり,そのときの最小値は$[イ]$である.
(2)$\angle \mathrm{O}$が直角の直角三角形$\mathrm{OAB}$において,$\angle \mathrm{O}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$とするとき,$\mathrm{OC}=[ウ]$であり,$\mathrm{OB}=\mathrm{OC}$のとき,$\tan A$の値は$[エ]$である.
(3)$3$次方程式$x^3+ax-3a=0$のただひとつの整数解が$x=2$であるとき,$a=[オ]$であり,そのときの虚数解は,$x=[カ]$である.
(4)$x$の$2$次式$f(x)$が,$f(-1)=f(2)=0$と$f(3)=-1$を満たすとき,$f^\prime(-1)=[キ]$であり,$\displaystyle \int_0^2 f(x) \, dx=[ク]$である.
(5)$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{5}{6} \pi$のとき,$\displaystyle \sin \left( 2\theta-\frac{\pi}{6} \right)-\cos 2\theta$の最大値は$[ケ]$であり,最小値は$[コ]$である.
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第3問
円周を$8$等分する点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_8$からいくつかの点を無作為に選ぶ.どの点も選ばれる確率は等しいとするとき,次の問に答えなさい.

(1)異なる$2$点を選ぶとき,この$2$点を端点とする線分が円の直径となる確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)異なる$3$点を選ぶとき,この$3$点からなる三角形が直角二等辺三角形となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)異なる$4$点を選ぶとき,この$4$点からなる四角形が正方形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
(4)異なる$3$点を選ぶとき,この$3$点からなる三角形が二等辺三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)異なる$5$点を選ぶとき,この$5$点からなる五角形を$F$とする.残りの$3$点のうち$2$点を端点とする線分がいずれも五角形$F$と交わる確率は$\displaystyle \frac{[コ]}{[サ]}$である.
京都府立大学 公立 京都府立大学 2011年 第1問
$t>0$とする.平面上に$\triangle \mathrm{OAB}$と点$\mathrm{P}$がある.$\mathrm{P}$は$(2-t) \overrightarrow{\mathrm{PO}}+2(1-t) \overrightarrow{\mathrm{PA}}+3t \overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}}$を満たす.直線$\mathrm{OP}$と直線$\mathrm{AB}$の交点を$\mathrm{C}$とする.$|\overrightarrow{\mathrm{OA}}|=a$,$|\overrightarrow{\mathrm{OB}}|=b$とする.以下の問いに答えよ.

(1)$\displaystyle \frac{|\overrightarrow{\mathrm{BC}}|}{|\overrightarrow{\mathrm{AC}}|}$を$t$を用いて表せ.

(2)線分$\mathrm{OC}$が$\angle \mathrm{AOB}$の$2$等分線となるとき,$\mathrm{C}$は辺$\mathrm{AB}$を$a:b$に内分する点であることを示せ.
(3)$(2)$のとき,$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PAB}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を$a,\ b$を用いて表せ.
名古屋工業大学 国立 名古屋工業大学 2010年 第1問
四角形ABCDは次の条件を満たす.

\mon[(i)] $\text{AB}=\text{BC}=\text{CD}=1$
\mon[(ii)] $\text{BD}=1,\ \angle \text{ABD}=90^\circ$

線分ACと線分BDとの交点をEとする.線分ABを3等分して,点Aに近い分点をMとし,点Bに近い分点をNとする.$\angle \text{CAB}=\alpha,\ \angle \text{MDN}=\beta$とおくとき,次の問いに答えよ.

(1)線分の長さの比の値$\displaystyle \frac{\text{BE}}{\text{DE}}$を求めよ.
(2)$\tan \beta$の値を求めよ.
(3)$\alpha$と$\beta$の大小を判定せよ.
山口大学 国立 山口大学 2010年 第1問
$3$辺が$\mathrm{AB}=4,\ \mathrm{BC}=6,\ \mathrm{CA}=5$である$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$の外接円の半径を求めなさい.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$を求めなさい.
(3)$\mathrm{OB} \perp \mathrm{AD}$を示しなさい.
早稲田大学 私立 早稲田大学 2010年 第4問
$\displaystyle x \geqq \frac{1}{2}$において,直線$\displaystyle y=-\frac{1}{2}x+\frac{3}{2}$,曲線$\displaystyle y=4\left(x-\frac{1}{2}\right)^2$および$x$軸で囲まれる図形を$D$とする.ただし,$D$は境界をすべて含む.このとき,次の各問に答えよ.

(1)図形$D$の面積$S$を求めよ.
(2)直線$\ell:y=ax+b (a>0)$と図形$D$が共有点をもつとき,$a,\ b$のみたす不等式を求めよ.また,それらの不等式が表す領域を$a$-$b$平面上に図示せよ.
(3)図形$D$の面積$S$が,直線$y=4x+b$によって$2$等分されるような定数$b$の値を求めよ.
スポンサーリンク

「等分」とは・・・

 まだこのタグの説明は執筆されていません。