タグ「等分」の検索結果

6ページ目:全78問中51問~60問を表示)
山形大学 国立 山形大学 2012年 第1問
単位円の円周を$6$等分する点を時計回りの順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$,$\mathrm{P}_6$とする.さいころを投げて出た目$i$と点$\mathrm{P}_i$を対応させる.さいころを$3$回投げて出た目が全て異なる場合は対応する点を結ぶと三角形ができる.次の問に答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_5$と$\triangle \mathrm{P}_1 \mathrm{P}_3 \mathrm{P}_5$の面積をそれぞれ求めよ.
(2)さいころを$3$回投げて,三角形ができる確率を求めよ.
(3)さいころを$3$回投げて,二等辺三角形(ただし正三角形は除く)ができる確率を求めよ.
(4)さいころを$3$回投げてできる図形の面積の期待値を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
鳴門教育大学 国立 鳴門教育大学 2012年 第2問
正方形の各辺を$n$等分する点と,正方形の$4$つの頂点について,次の問いに答えよ.ただし,$n \geqq 2$とする.

(1)これらの点のうちの$3$個を頂点とする三角形の個数を求めよ.
(2)(1)のうち,直角二等辺三角形の個数を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
法政大学 私立 法政大学 2012年 第2問
$n$を$2$以上の整数とする.

(1)平面上の平行な$2$直線上に,相異なる点がそれぞれ$n$個ずつある.これらの$2n$個の点から$3$点を選ぶ.

(i) $n=5$のとき,この選び方は全部で$[アイウ]$通りあり,選んだ$3$点が$1$直線上にあるような選び方は$[エオ]$通りある.
(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \left( [カ]-[キ] \right)$通りある.
ただし,$[カ]$,$[キ]$については,以下の$①$~$\marukyu$からそれぞれ$1$つを選べ.ここで,同じものを何回選んでもよい.
\[ \begin{array}{lllllllll}
① n & & ② 2n & & ③ 3n & & ④ n^2 & & ⑤ 2n^2 \\
⑥ 3n^2 & & ④chi n^3 & & \maruhachi 2n^3 & & \marukyu 3n^3 & &
\end{array} \]

(2)$\mathrm{O}$を中心とする円の円周を等分する$2n$個の点がある.これらの$2n$個の点と点$\mathrm{O}$から$3$点を選ぶ.

(i) $n=3$のとき,選んだ$3$点が三角形をつくるような選び方は$[クケ]$通りある.

(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \frac{n \left( [コ] n^{[サ]}-[シ] \right)}{[ス]}$通りある.
(iii) $n=12$のとき,選んだ$3$点が正三角形をつくるような選び方は$[セソ]$通りある.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
京都大学 国立 京都大学 2011年 第1問
次の各問に答えよ.

(1)辺$\mathrm{AB}$,辺$\mathrm{BC}$,辺$\mathrm{CA}$の長さがそれぞれ$12$,$11$,$10$の三角形$\mathrm{ABC}$を考える.$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AD}$の長さを求めよ.
(2)箱の中に,$1$から$9$までの番号を$1$つずつ書いた$9$枚のカードが入っている.ただし,異なるカードには異なる番号が書かれているものとする.この箱から$2$枚のカードを同時に選び,小さいほうの数を$X$とする.これらのカードを箱に戻して,再び$2$枚のカードを同時に選び,小さいほうの数を$Y$とする.$X=Y$である確率を求めよ.
東京学芸大学 国立 東京学芸大学 2011年 第4問
長さ2の線分ABを直径とする半円の弧AB上に点Pをとる.このとき,下の問いに答えよ.

(1)線分ABの中点をOとし,$\angle \text{POB}=\theta$とするとき,弧APと弦APで囲まれる部分の面積を$\theta$で表せ.
(2)弦APがこの半円の面積を2等分するとき,不等式$2 \koa{BP}<\koa{AP}<3 \koa{BP}$が成り立つことを示せ.ただし,$\koa{AP},\ \koa{BP}$は弧AP,弧BPの長さを表す.
高知大学 国立 高知大学 2011年 第3問
方程式$x^2+y^2-2x+6y-6=0$で表される図形を$C$とする.このとき,次の問いに答えよ.

(1)図形$C$を図示せよ.
(2)直線$2x+3y=k$が,図形$C$を2等分するような定数$k$の値を求めよ.
(3)図形$C$と直線$2x+3y=k$が異なる共有点を2個もつような定数$k$の値の範囲を求めよ.
(4)図形$C$に接し,傾きが$\displaystyle -\frac{2}{3}$である直線の方程式を求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第1問
座標平面上に3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( x,\ \frac{1}{2} \right) \ (x>0)$を考える.ベクトル$t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}}$の長さを最小にする実数$t$の値を$t_0$とし,点$\mathrm{H}$を$\overrightarrow{\mathrm{OH}}=t_0 \overrightarrow{\mathrm{OA}}+(1-t_0) \overrightarrow{\mathrm{OB}}$で定まる点とする.

(1)$t_0$を$x$を用いて表せ.
(2)$\mathrm{H}$が線分$\mathrm{AB}$を2等分するとき,$x$の値を求めよ.
(3)$x$を動かすとき,$\triangle \mathrm{OAH}$の面積が最大になる$x$の値を求めよ.
スポンサーリンク

「等分」とは・・・

 まだこのタグの説明は執筆されていません。