タグ「競技者」の検索結果

1ページ目:全5問中1問~10問を表示)
愛媛大学 国立 愛媛大学 2014年 第5問
$n$は自然数,$p_0$,$p_1$,$\cdots$,$p_n$は$p_0>0$,$\cdots$,$p_n>0$かつ$p_0+p_1+\cdots+p_n=1$を満たす定数とする.ポイント$0,\ 1,\ 2,\ \cdots,\ n-1,\ n$が,それぞれ$p_0,\ p_1,\ p_2,\ \cdots,\ p_{n-1},\ p_n$の確率で得られる試行$T$を考える.試行$T$を$1$回行って得られるポイントの期待値を$a$とし,$A=[a]+1$とする.ただし,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.競技者は,試行$T$を下記の各設問のルールに従って何回か行う.

(1)$k$を$1 \leqq k \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$2$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$k$以上であれば$2$回目の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$k$未満であれば$2$回目の試行$T$を行う.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
このとき賞金の期待値を$b_k$とする.$b_k$を求めよ.

(2)$(1)$の期待値$b_k$は$k$が$A$のとき最大となることを示せ.
(3)$m$を$1 \leqq m \leqq n$を満たす整数とする.競技者は,試行$T$を以下のルールに従って最大$3$回まで行う.

\mon[$①$] 試行$T$を$1$回行い,もしポイントが$m$以上であれば$2$回目以降の試行を行わず,このポイントを賞金とする.
\mon[$②$] $1$回目のポイントが$m$未満であれば$2$回目の試行$T$を行う.$2$回目のポイントが$A$以上であれば$3$回目の試行を行わない.このとき,$1$回目のポイントは無効とし,$2$回目のポイントを賞金とする.
\mon[$③$] $2$回目のポイントが$A$未満であれば$3$回目の試行$T$を行う.このとき,$1$回目,$2$回目のポイントは無効とし,$3$回目のポイントを賞金とする.
このとき賞金の期待値を$c_m$とする.$c_m$を求めよ.

(4)$(3)$の期待値$c_m$は$m$が$B=[b_A]+1$のとき最大となり,$c_B \geqq b_A$であることを示せ.ただし,$b_A$は$(1)$で求めた期待値$b_k$の$k=A$のときの値である.
(5)$n=5$とし,試行$T$として,$5$枚の硬貨を同時に投げ,表の出た枚数をポイントとする試行を考える.また,$b_k$,$c_m$は上記で定義したものとする.

(i) $p_0$,$p_1$,$p_2$,$p_3$,$p_4$,$p_5$,$a$を求めよ.
(ii) $(1)$のように最大$2$回試行を行う場合,$b_k$の最大値を求めよ.
(iii) $(3)$のように最大$3$回試行を行う場合,$c_m$の最大値を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
九州大学 国立 九州大学 2010年 第2問
次のような競技を考える.競技者がサイコロを振る.もし,出た目が気に入ればその目を得点とする.そうでなければ,もう$1$回サイコロを振って,$2$つの目の合計を得点とすることができる.ただし,合計が$7$以上になった場合は得点は$0$点とする.この取決めによって,$2$回目を振ると得点が下がることもあることに注意しよう.次の問いに答えよ.

(1)競技者が常にサイコロを$2$回振るとすると,得点の期待値はいくらか.
(2)競技者が最初の目が$6$のときだけ$2$回目を振らないとすると,得点の期待値はいくらか.
(3)得点の期待値を最大にするためには,競技者は最初の目がどの範囲にあるときに$2$回目を振るとよいか.
スポンサーリンク

「競技者」とは・・・

 まだこのタグの説明は執筆されていません。