タグ「立体」の検索結果

4ページ目:全54問中31問~40問を表示)
熊本大学 国立 熊本大学 2011年 第4問
$xyz$空間内の3点$\mathrm{P}(0,\ 0,\ 1)$,$\mathrm{Q}(0,\ 0,\ -1)$,$\mathrm{R}(t,\ t^2-t+1,\ 0)$を考える.$t$が$0 \leqq t \leqq 2$の範囲を動くとき,三角形$\mathrm{PQR}$が通過してできる立体を$K$とする.以下の問いに答えよ.

(1)$K$を$xy$平面で切ったときの断面積を求めよ.
(2)$K$の体積を求めよ.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
$xy$平面上において,媒介変数$t \ (0 \leqq t \leqq 2\pi)$によって$x=2(1+\cos t)\cos t,\ y=2(1+\cos t)\sin t$と表される下図の曲線について次の問いに答えよ.
(図は省略)

(1)$x$の最大値,最小値を求めよ.
(2)$\displaystyle \frac{dx}{dt}$を求めよ.
(3)この曲線で囲まれる図形を$x$軸のまわりに1回転してできる立体の体積を求めよ.
弘前大学 国立 弘前大学 2010年 第2問
$a>1$を定数とする.3つの放物線$\displaystyle y=x^2,\ y=\frac{1}{2}x^2,\ y=ax^2$の$x \geqq 0$の部分をそれぞれ,$C,\ C_1,\ C_2$とする.$C$上の点Pから$x$軸に下ろした垂線と2曲線$C,\ C_1$で囲まれた領域を$D_1$とする.Pから$y$軸に下ろした垂線と2曲線$C,\ C_2$で囲まれた領域を$D_2$とする.

(1)領域$D_1,\ D_2$の面積をそれぞれ$S_1,\ S_2$とする.点Pのとり方によらず常に$S_1=S_2$となるような$a$の値を求めよ.
(2)領域$D_1,\ D_2$を$y$軸のまわりに1回転してできる立体の体積をそれぞれ$V_1,\ V_2$とする.点Pのとり方によらず常に$V_1=V_2$となるような$a$の値を求めよ.
大阪大学 国立 大阪大学 2010年 第4問
半径3の球$T_1$と半径1の球$T_2$が,内接した状態で空間に固定されている.半径1の球$S$が次の条件(A),(B)を同時に満たしながら動く.
\begin{eqnarray}
\text{(A)} \quad S \text{は} T_1 \text{の内部にあるか} T_1 \text{に内接している.} \nonumber \\
\text{(B)} \quad S \text{は} T_2 \text{の外部にあるか} T_2 \text{に外接している.} \nonumber
\end{eqnarray}
$S$の中心が存在しうる範囲を$D$とするとき,立体$D$の体積を求めよ.
信州大学 国立 信州大学 2010年 第3問
方程式$y = (\sqrt{x}-\sqrt{2})^2$が定める曲線を$C$とする.

(1)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積$S$を求めよ.
(2)曲線$C$と直線$y=2$で囲まれた図形を,直線$y=2$のまわりに1回転してできる立体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2010年 第4問
2つずつ平行な3組の平面で囲まれた立体を平行六面体という.下図のような平行六面体$\mathrm{OADB}$-$\mathrm{CQRS}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{F}$,$\triangle \mathrm{DQS}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)4点$\mathrm{O},\ \mathrm{F},\ \mathrm{G},\ \mathrm{R}$は同一直線上にあることを示せ.

(図は省略)
岩手大学 国立 岩手大学 2010年 第4問
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.下図のような平行六面体$\mathrm{OADB}$-$\mathrm{CQRS}$において,$\triangle \mathrm{ABC}$の重心を$\mathrm{F}$,$\triangle \mathrm{DQS}$の重心を$\mathrm{G}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$4$点$\mathrm{O},\ \mathrm{F},\ \mathrm{G},\ \mathrm{R}$は同一直線上にあることを示せ.

(図は省略)
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)双曲線$C:x^2-y^2=-1$上の点$(1,\ \sqrt{2})$における接線$\ell$の方程式を求めよ.
(2)$C$と$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
富山大学 国立 富山大学 2010年 第2問
$xyz$空間内の6つの平面$x=0,\ x=1,\ y=0,\ y=1,\ z=0,\ z=1$によって囲まれた立方体を$P$とおく.$P$を$x$軸のまわりに1回転してできる立体を$P_x$とし,$P$を$y$軸のまわりに1回転してできる立体を$P_y$とする.さらに,$P_x$と$P_y$の少なくとも一方に属する点全体でできる立体を$Q$とする.このとき,次の問いに答えよ.

(1)$Q$と平面$z=t$が交わっているとする.このとき,$P_x$を平面$z=t$で切ったときの切り口を$R_x$とし,$P_y$を平面$z=t$で切ったときの切り口を$R_y$とする.$R_x$の面積,$R_y$の面積,および$R_x$と$R_y$の共通部分の面積を求めよ.
(2)$Q$と平面$z=t$が交わっているとき,$Q$を平面$z=t$で切ったときの切り口の面積$S(t)$を求めよ.
(3)$Q$の体積を求めよ.
スポンサーリンク

「立体」とは・・・

 まだこのタグの説明は執筆されていません。