タグ「立体」の検索結果

3ページ目:全54問中21問~30問を表示)
横浜国立大学 国立 横浜国立大学 2011年 第4問
$xy$平面上の2曲線$\displaystyle C_1 : y = \frac{\log x}{x}$と$C_2 : y = ax^2$は点Pを共有し,Pにおいて共通の接線をもっている.ただし,$a$は定数とする.次の問いに答えよ.

(1)関数$\displaystyle y = \frac{\log x}{x}$の増減,凹凸,変曲点を調べ,$C_1$の概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.
(2)Pの座標および$a$の値を求めよ.
(3)不定積分$\displaystyle \int \left( \frac{\log x}{x} \right)^2 \, dx$を求めよ.
(4)$C_1,\ C_2$および$x$軸で囲まれる部分を,$x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2011年 第6問
$x>0$で定義された関数$\displaystyle f(x)=\frac{(\log x)^2}{\sqrt{x}}$について,次の問いに答えよ.

(1)$y=f(x)$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$と2直線$x=e$,$x=e^2$および$x$軸で囲まれた図形を$x$軸のまわりに1回転して得られる立体の体積を求めよ.
筑波大学 国立 筑波大学 2011年 第3問
$a$を$\displaystyle 0 < \alpha <\frac{\pi}{2}$を満たす定数とする.円$C : x^2 + (y+ \sin \alpha)^2 = 1$および,その中心を通る直線$\ell :y= (\tan \alpha) x - \sin \alpha$を考える.このとき,以下の問いに答えよ.

(1)直線$\ell$と円$C$の2つの交点の座標を$\alpha$を用いて表せ.
(2)等式
\[ 2\int_{\cos \alpha}^1 \sqrt{1-x^2} \, dx+ \int_{-\cos \alpha}^{\cos \alpha} \sqrt{1-x^2} \, dx = \frac{\pi}{2} \]
が成り立つことを示せ.
(3)連立方程式
\[ \left\{
\begin{array}{l}
y \leqq (\tan \alpha)x-\sin \alpha \\
x^2+(y+\sin \alpha)^2 \leqq 1
\end{array}
\right. \]
の表す$xy$平面上の図形を$D$とする.図形$D$を$x$軸のまわりに1回転させてできる立体の体積を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第5問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第5問
座標空間内で点Q$(a,\ b,\ c)$を中心とする半径$r$の球を$B$とし,$B$は各座標平面と交わる位置にあるとする.$B$が$xy$平面によって切り取られる立体のうち,Qを含む方を$B_1$,切断面を$D_1$とする.また$B$が$xz$平面によって切り取られる図形のうち,Qを含む方を$B_2$,切断面を$D_2$とする.$D_1$の面積が$8\pi$,$D_2$の面積が$12\pi$,$D_1$と$D_2$が交わってできる線分の長さが4のとき,以下の問いに答えよ.

(1)$D_1,\ D_2$のそれぞれの中心と半径を$a,\ b,\ c,\ r$を用いて表せ.
(2)$b,\ c,\ r$の値を求めよ.
(3)$B_1$と$B_2$の共通部分が$yz$平面によって切り取られた切断面を$D_3$とする.$a$を動かしたときの$D_3$の面積の最大値とそのときの点Qの座標Q$(a,\ b,\ c)$を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第4問
$e$を自然対数の底とする.関数$f(x)$を$f(x)=\log (e-x) \ (x<e)$とする.このとき,以下の設問に答えよ.

(1)曲線$y=f(x)$と$x$軸との交点を求めよ.
(2)曲線$y=f(x)$と$y$軸との交点をPとする.点Pにおける曲線$y=f(x)$の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)曲線$y=f(x)$と直線$\ell$のグラフを描け.
(4)曲線$y=f(x)$と直線$\ell$および$x$軸によって囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第3問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{x^2} \log x \, dx$および$\displaystyle \int \frac{1}{x^2} (\log x)^2 \, dx$を求めよ.
(2)実数$a$に対して,曲線$\displaystyle y=\frac{1}{x}(a+\log x) \ (1 \leqq x \leqq e)$と$x$軸および2直線$x=1,\ x=e$で囲まれた部分を,$x$軸のまわりに1回転させてできる立体の体積を$V$とする.$V$を$a$を用いて表せ.また,$a$が実数全体を動くとき,$V$を最小とする$a$の値を求めよ.
スポンサーリンク

「立体」とは・・・

 まだこのタグの説明は執筆されていません。