タグ「空間」の検索結果

6ページ目:全185問中51問~60問を表示)
上智大学 私立 上智大学 2015年 第4問
$xyz$空間において,$xy$平面上に$4$点
\[ \mathrm{A}_1(1,\ 0,\ 0),\quad \mathrm{B}_1(0,\ 1,\ 0),\quad \mathrm{C}_1(-1,\ 0,\ 0),\quad \mathrm{D}_1(0,\ -1,\ 0) \]
を頂点とする正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$がある.$0<\theta<\pi$とし,この正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面上で原点を中心に角$\theta$だけ回転させた後で$z$軸の正の方向に$2$だけ平行移動した正方形を$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とする.

動点$\mathrm{P}_1$,$\mathrm{P}_2$が,それぞれ点$\mathrm{A}_1$,$\mathrm{A}_2$から同時に出発し,正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$の周上を,同じ速さで同じ向きに一周する.このとき,線分$\mathrm{P}_1 \mathrm{P}_2$が動いてできる曲面と正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とで囲まれる立体を$V$とする.

(1)線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最大値は$\sqrt{[ト]+[ナ] [き]}$であり,線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最小値は$\sqrt{[ニ]+[ヌ] [く]}$である.
(2)$0<h<2$とするとき,平面$z=h$による立体$V$の断面は,一辺の長さが
\[ \sqrt{[ネ]+\left( [ノ]h^2+[ハ]h \right) \left( 1-[け] \right)} \]
の正方形であり,その一辺の長さは$h=[ヒ]$のとき最小である.

(3)立体$V$の体積は$\displaystyle \frac{[フ]}{[ヘ]}+\frac{[ホ]}{[マ]} [こ]$である.

(4)$\theta$が$\pi$に限りなく近づくとき,立体$V$の体積は$\displaystyle \frac{[ミ]}{[ム]}$に収束する.
\begin{screen}
$[き]$~$[こ]$の選択肢:

$\mathrm{(a)} \ \sin \theta \quad \mathrm{(b)} \ \cos \theta \quad \mathrm{(c)} \ \tan \theta \quad \mathrm{(d)} \ \sin^2 \theta \quad \mathrm{(e)} \ \cos \theta \sin \theta$
$\displaystyle \mathrm{(f)} \ \frac{1}{\sin \theta} \quad \mathrm{(g)} \ \frac{1}{\cos \theta} \quad \mathrm{(h)} \ \frac{1}{\tan \theta}$

\end{screen}
(図は省略)
九州産業大学 私立 九州産業大学 2015年 第4問
空間内に$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$が与えられている.

(1)$|\overrightarrow{\mathrm{AB}}|$の値は$[ア]$である.
(2)$|\overrightarrow{\mathrm{AX}}|=|\overrightarrow{\mathrm{BX}}|=|\overrightarrow{\mathrm{CX}}|=2$となる点$\mathrm{X}(a,\ b,\ c)$のうち,$a>0$となる点を$\mathrm{D}$とする.$\mathrm{D}$の座標は$[イ]$である.
(3)$\triangle \mathrm{ABC}$の重心$\mathrm{G}$の座標は$[ウ]$である.
(4)$\overrightarrow{\mathrm{DG}} \cdot \overrightarrow{\mathrm{AB}}$の値は$[エ]$である.
(5)四面体$\mathrm{ABCD}$の体積は$[オ]$である.
東京女子大学 私立 東京女子大学 2015年 第4問
空間のベクトル$\overrightarrow{n}=(1,\ -1,\ 1)$,$\overrightarrow{a}=(\sqrt{2},\ -2 \sqrt{2},\ 0)$に対し,以下の設問に答えよ.

(1)$\overrightarrow{n} \cdot \overrightarrow{b}=0$,$\overrightarrow{a} \cdot \overrightarrow{b}=0$,$|\overrightarrow{b}|=1$をみたすベクトル$\overrightarrow{b}$を$1$つ求めよ.
(2)$(1)$で求めた$\overrightarrow{b}$に対し,$\overrightarrow{n} \cdot \overrightarrow{c}=0$,$\overrightarrow{b} \cdot \overrightarrow{c}=0$,$|\overrightarrow{c}|=1$をみたすベクトル$\overrightarrow{c}$を$1$つ求めよ.
(3)$s,\ t$を実数とし,$(1)$と$(2)$で求めた$\overrightarrow{b}$と$\overrightarrow{c}$を用いて$\overrightarrow{p}=s \overrightarrow{b}+t \overrightarrow{c}$とおく.$|\overrightarrow{p}|=1$であるとき,$|\overrightarrow{p}-\overrightarrow{a}|$の最小値を求めよ.また,そのときの$\overrightarrow{p}$を求めよ.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第3問
$xyz$空間の原点を$\mathrm{O}$とし,点$(0,\ 0,\ 1)$と点$(\sqrt{3},\ 1,\ 1)$を通る直線を$\ell$とする.点$\mathrm{P}$は,時刻$t=0$のとき$(-4,\ 0,\ 0)$にあって,$x$軸上を正の向きに速さ$1$で動いている.点$\mathrm{Q}$は,$t=0$のとき$(0,\ 0,\ 1)$にあって,直線$\ell$上を$x$座標が増えるように速さ$2$で動いている.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$の式で表せ.
(2)三角形$\mathrm{OPQ}$の面積$S$を$t$の式で表せ.
(3)$-0.33 \leqq t \leqq 2.6$のときの$S$の最大値と最小値,およびそれらをとる$t$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第4問
空間内の$3$点$\mathrm{A}(0,\ t,\ 1)$,$\mathrm{B}(1,\ 0,\ t)$,$\mathrm{C}(t,\ 1,\ 0) (0 \leqq t \leqq 1)$を頂点とする$\triangle \mathrm{ABC}$の面積$S$の最小値を求めなさい.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
名古屋大学 国立 名古屋大学 2014年 第1問
空間内にある半径$1$の球(内部を含む)を$B$とする.直線$\ell$と$B$が交わっており,その交わりは長さ$\sqrt{3}$の線分である.

(1)$B$の中心と$\ell$との距離を求めよ.
(2)$\ell$のまわりに$B$を$1$回転してできる立体の体積を求めよ.
神戸大学 国立 神戸大学 2014年 第3問
空間において,原点$\mathrm{O}$を通らない平面$\alpha$上に一辺の長さ$1$の正方形があり,その頂点を順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.このとき,以下の問に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$のとき,ベクトル
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}} \]
が,平面$\alpha$と垂直であることを示せ.
スポンサーリンク

「空間」とは・・・

 まだこのタグの説明は執筆されていません。