タグ「空間」の検索結果

5ページ目:全185問中41問~50問を表示)
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
山口大学 国立 山口大学 2015年 第3問
$a,\ b$を定数とする.空間内に$4$点$\mathrm{A}(1,\ 5,\ 9)$,$\mathrm{B}(3,\ 4,\ 8)$,$\mathrm{C}(2,\ 6,\ 7)$,$\mathrm{D}(a,\ b,\ 12)$がある.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.$\mathrm{AG} \perp \mathrm{DG}$,$\mathrm{BG} \perp \mathrm{DG}$であるとき,次の問いに答えなさい.

(1)点$\mathrm{G}$の座標と$a,\ b$の値を求めなさい.
(2)$\angle \mathrm{BAC}$の大きさを求めなさい.
(3)$\triangle \mathrm{ABC}$の面積を求めなさい.
(4)点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を頂点とする四面体の体積を求めなさい.
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第1問
$xyz$空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(2,\ 4,\ -1)$を考える.直線$\mathrm{AB}$上の点$\mathrm{C}_1$,$C_2$はそれぞれ次の条件を満たす.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$|\overrightarrow{\mathrm{OC}}|$は$\mathrm{C}$が$\mathrm{C}_1$に一致するとき最小となる.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{OC}}|}$は$\mathrm{C}$が$\mathrm{C}_2$に一致するとき最大となる.

このとき,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OC}_1}|$の値および内積$\overrightarrow{\mathrm{AC}_1} \cdot \overrightarrow{\mathrm{OC}_1}$の値を求めよ.

(2)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}_2}|}{|\overrightarrow{\mathrm{OC}_2}|}$の値および内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}_2}$の値を求めよ.

(3)$2$つの三角形$\triangle \mathrm{AC}_1 \mathrm{O}$と$\triangle \mathrm{AOC}_2$は相似であることを示せ.
星薬科大学 私立 星薬科大学 2015年 第6問
$c_y \geqq 0$,$c_z \geqq 0$として,空間に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2 \sqrt{3})$,$\mathrm{C}(0,\ c_y,\ c_z)$,$\mathrm{D}(-2,\ d_y,\ d_z)$を頂点とする正四面体がある.次の問に答えよ.

(1)この正四面体$\mathrm{ABCD}$の一辺の長さは$[$51$]$であり,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[$52$]$である.
(2)点$\mathrm{C}$の座標において
\[ c_y=\frac{[$53$] \sqrt{[$54$]}}{[$55$]},\quad c_z=\frac{[$56$] \sqrt{[$57$]}}{[$58$]}, \]
点$\mathrm{D}$の座標において$d_y=[$59$]$,$d_z=[$60$]$である.
名城大学 私立 名城大学 2015年 第2問
空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 1,\ 1)$,$\mathrm{B}(1,\ 2,\ -1)$,$\mathrm{C}(-2,\ 4,\ 3)$を頂点とする四面体$\mathrm{OABC}$について,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{C}$から三角形$\mathrm{OAB}$に垂線を下ろす.この垂線と三角形$\mathrm{OAB}$との交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{CP}}$を求めよ.
(3)点$\mathrm{Q}$を辺$\mathrm{OC}$上にとる.四面体$\mathrm{OABQ}$の体積が$\displaystyle \frac{9}{4}$となるとき,$\overrightarrow{\mathrm{OQ}}$を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
早稲田大学 私立 早稲田大学 2015年 第2問
空間内に,一辺の長さ$1$の正四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問に答えよ.

(1)辺$\mathrm{AB}$の中点を$\mathrm{D}$とし,また,辺$\mathrm{OC}$を$k:(1-k)$に内分する点を$\mathrm{E}$とする.ただし,$0<k<1$とする.このとき,$\overrightarrow{\mathrm{DE}}$を,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{DE}}$の大きさ$|\overrightarrow{\mathrm{DE}}|$を$k$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{DE}}$を$k$を用いて表せ.
(4)$\triangle \mathrm{EAB}$の面積$S$を$k$を用いて表せ.さらに,面積$S$を最小にする$k$の値とそのときの面積を求めよ.
東邦大学 私立 東邦大学 2015年 第13問
$\mathrm{O}$を原点とする空間において,$3$点$\mathrm{P}(1,\ -2,\ 0)$,$\mathrm{Q}(0,\ -2,\ 2)$,$\mathrm{R}(2,\ 0,\ 2)$を通る平面を$\alpha$とする.また,平面$\alpha$上に,点$\mathrm{P}$を中心とし,線分$\mathrm{PR}$を半径とする円$C$がある.このとき,原点$\mathrm{O}$と平面$\alpha$との距離は$[サ]$であり,原点$\mathrm{O}$と円$C$の周上の点との距離の最大値は$[シ] \sqrt{[ス]}$である.
スポンサーリンク

「空間」とは・・・

 まだこのタグの説明は執筆されていません。