タグ「空間」の検索結果

2ページ目:全185問中11問~20問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
空間に$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(b,\ c,\ 0)$,$\mathrm{C}(d,\ e,\ 4)$,$\mathrm{T}(d,\ e,\ t)$があり,このうちの$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点になっているとする.ただし,$a,\ b,\ c,\ d,\ e$はいずれも正の実数で,$0<t<4$とする.

(1)$a,\ b,\ c,\ d,\ e$の値を求めよ.
(2)$\cos \angle \mathrm{OTA}$を$t$を用いて表せ.
(3)$\angle \mathrm{OTC}=\angle \mathrm{OTA}$となるときの$t$の値を求めよ.また,そのときの$\cos \angle \mathrm{OTA}$の値と三角形$\mathrm{OTA}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
空間に$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(b,\ c,\ 0)$,$\mathrm{C}(d,\ e,\ 4)$,$\mathrm{T}(d,\ e,\ t)$があり,このうちの$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点になっているとする.ただし,$a,\ b,\ c,\ d,\ e$はいずれも正の実数で,$0<t<4$とする.

(1)$a,\ b,\ c,\ d,\ e$の値を求めよ.
(2)$\cos \angle \mathrm{OTA}$を$t$を用いて表せ.
(3)$\angle \mathrm{OTC}=\angle \mathrm{OTA}$となるときの$t$の値を求めよ.また,そのときの$\cos \angle \mathrm{OTA}$の値と三角形$\mathrm{OTA}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第1問
$a$を正の実数とする.

(1)平面上の点$(x,\ y)$は$x+y=a$,$x>0$,$y>0$の範囲を動くものとする.このとき,
\[ x \log x+y \log y \]
の最小値を求めよ.
(2)空間上の点$(x,\ y,\ z)$は$x+y+z=a$,$x>0$,$y>0$,$z>0$の範囲を動くものとする.このとき,
\[ x \log x+y \log y+z \log z \]
の最小値を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
空間において,$3$点$\mathrm{A}(5,\ 0,\ 1)$,$\mathrm{B}(4,\ 2,\ 0)$,$\mathrm{C}(0,\ 1,\ 5)$を頂点とする三角形$\mathrm{ABC}$がある.以下の問いに答えよ.

(1)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)原点$\mathrm{O}(0,\ 0,\ 0)$から平面$\mathrm{ABC}$に垂線を下し,平面$\mathrm{ABC}$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{AH}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とおくとき,実数$\ell,\ m$の値を求めよ.
(4) 直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{AH}}=k \overrightarrow{\mathrm{AM}}$とおくとき,実数$k$の値と三角形$\mathrm{HBC}$の面積$T$を求めよ.
(5)原点$\mathrm{O}$を頂点,四角形$\mathrm{ABHC}$を底面とする四角錐$\mathrm{O}$-$\mathrm{ABHC}$の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
愛媛大学 国立 愛媛大学 2016年 第4問
空間内の$2$点$\mathrm{A}(4,\ -2,\ 2)$,$\mathrm{B}(2,\ -4,\ 4)$に対して,線分$\mathrm{AB}$を直径とする球$S$の中心を$\mathrm{C}$とする.

(1)球$S$の方程式を求めよ.
(2)$xy$平面と平行な平面$\alpha$のうち$S$と$\alpha$が交わってできる円の半径が最大となるような$\alpha$の方程式を求めよ.
(3)原点$\mathrm{O}$から最も近い$S$上の点$\mathrm{D}$,および最も遠い点$\mathrm{E}$の座標をそれぞれ求めよ.
(4)$(2)$で求めた$\alpha$と$S$が交わってできる円上を動く点$\mathrm{P}$に対して,$\triangle \mathrm{CDP}$の面積を最大とする$\mathrm{P}$の座標をすべて求めよ.ただし,$\mathrm{D}$は$(3)$で求めた点である.
東京学芸大学 国立 東京学芸大学 2016年 第2問
空間において,同一平面上にない$4$点を$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.線分$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とする平行四辺形を$\mathrm{OADB}$,線分$\mathrm{OA}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OAEC}$,線分$\mathrm{OB}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OBFC}$とする.下の問いに答えよ.

(1)$\triangle \mathrm{ODE}$を含む平面と直線$\mathrm{AF}$の交点を$\mathrm{G}$とするとき,ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=x$とする.点$\mathrm{O}$を中心とし,点$\mathrm{G}$を含む球面と$\triangle \mathrm{ABE}$を含む平面の交わりで得られる円の半径の最小値とそのときの$x$の値を求めよ.
山口大学 国立 山口大学 2016年 第4問
空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.$\alpha$は$0<\alpha<1$を満たす定数とし,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ次のように定める.
\begin{itemize}
$\mathrm{P}$は$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$の値を最小にする点
$\mathrm{Q}$は$\mathrm{PB}$を$\alpha:1-\alpha$に内分する点
$\mathrm{R}$は$\mathrm{OC}$を$\alpha:1-\alpha$に内分する点
\end{itemize}
このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を求めなさい.
(2)$\mathrm{Q}$,$\mathrm{R}$の座標を$\alpha$を用いてそれぞれ表しなさい.
(3)$\triangle \mathrm{CPR}$と$\triangle \mathrm{BCQ}$の面積をそれぞれ$S_1$,$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を求めなさい.
山口東京理科大学 私立 山口東京理科大学 2016年 第4問
空間において,$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(-1,\ -1,\ 0)$,$\mathrm{C}(0,\ -1,\ -1)$を定める.点$\mathrm{P}$が$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線上の点であれば,実数$t$を用いて,
\[ \overrightarrow{\mathrm{CP}}=(1-t) \overrightarrow{\mathrm{CA}}+t \overrightarrow{\mathrm{CB}} \]
と表される.このとき,点$\mathrm{P}$が$\overrightarrow{\mathrm{CP}}$の長さを最小にするとき,$t$の値,点$\mathrm{P}$の座標について,
\[ t=[ニ],\quad \mathrm{P}(-[ヌ],\ -[ネ],\ [ノ]) \]
である.
スポンサーリンク

「空間」とは・・・

 まだこのタグの説明は執筆されていません。