タグ「空間」の検索結果

16ページ目:全185問中151問~160問を表示)
京都大学 国立 京都大学 2011年 第6問
空間内に四面体$\mathrm{ABCD}$を考える.このとき.$4$つの頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を同時に通る球面が存在することを示せ.
一橋大学 国立 一橋大学 2011年 第4問
$a,\ b,\ c$を正の定数とする.空間内に3点A$(a,\ 0,\ 0)$,B$(0,\ b,\ 0)$,C$(0,\ 0,\ c)$がある.

(1)辺ABを底辺とするとき,$\triangle$ABCの高さを$a,\ b,\ c$で表せ.
(2)$\triangle$ABC,$\triangle$OAB,$\triangle$OBC,$\triangle$OCAの面積をそれぞれ$S,\ S_1,\ S_2,\ S_3$とする.ただし,Oは原点である.このとき,不等式
\[ \sqrt{3}S \geqq S_1 +S_2+S_3 \]
が成り立つことを示せ.
(3)(2)の不等式において等号が成り立つための条件を求めよ.
九州大学 国立 九州大学 2011年 第4問
空間内の$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(0,\ 2,\ 3),\quad \mathrm{B}(1,\ 0,\ 3),\quad \mathrm{C}(1,\ 2,\ 0) \]
を考える.このとき,以下の問いに答えよ.

(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{D}$の座標を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に点$\mathrm{D}$から垂線を引き,交点を$\mathrm{F}$とする.線分$\mathrm{DF}$の長さを求めよ.
(3)四面体$\mathrm{ABCD}$の体積を求めよ.
岡山大学 国立 岡山大学 2011年 第1問
空間内に点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(2,\ 2,\ 2)$がある.点$\mathrm{P}$は$\mathrm{O}$から出発し,一回につき$x$軸,$y$軸,$z$軸いずれか一つの方向に長さ$1$だけ移動する.

(1)$\mathrm{P}$が$\mathrm{O}$から$\mathrm{A}$へ移動する最短経路は何通りあるか求めよ.
(2)さいころを投げて$1,\ 2,\ 3$の目が出たら$\mathrm{P}$は$x$軸正の方向に移動し,$4,\ 5$の目が出たら$y$軸正の方向に移動し,$6$の目が出たら$z$軸正の方向に移動するものとする.さいころを$6$回投げて$\mathrm{P}$が$\mathrm{A}$に到達する確率を求めよ.
(3)$(2)$と同じルールで,さいころを$6$回投げて$\mathrm{P}$が点$\mathrm{B}(1,\ 1,\ 1)$を通って$\mathrm{A}$に到達する確率を求めよ.
北海道大学 国立 北海道大学 2011年 第3問
次の問いに答えよ.

(1)$xy$平面上の3点O$(0,\ 0)$,A$(2,\ 1)$,B$(1,\ 2)$を通る円の方程式を求めよ.
(2)$t$が実数全体を動くとき,$xyz$空間内の点$(t +2,\ t +2,\ t)$がつくる直線を$\ell$とする.3点O$(0,\ 0,\ 0)$,A$^\prime (2,\ 1,\ 0)$,B$^\prime (1,\ 2,\ 0)$を通り,中心をC$(a,\ b,\ c)$とする球面$S$が直線$\ell$と共有点をもつとき,$a,\ b,\ c$の満たす条件を求めよ.
名古屋大学 国立 名古屋大学 2011年 第1問
$\displaystyle -\frac{1}{4}<s<\frac{1}{3}$とする.$xyz$空間内の平面$z = 0$の上に長方形
\[ R_s = \{f(x,\ y,\ 0) \; | \; 1 \leqq x \leqq 2+4s,\ 1 \leqq y \leqq 2-3s\} \]
がある.長方形$R_s$を$x$軸のまわりに$1$回転してできる立体を$K_s$とする.

(1)立体$K_s$の体積$V(s)$が最大となるときの$s$の値,およびそのときの$V(s)$の値を求めよ.
(2)$s$を$(1)$で求めた値とする.このときの立体$K_s$を$y$軸のまわりに$1$回転してできる立体$L$の体積を求めよ.
滋賀大学 国立 滋賀大学 2011年 第4問
$a$を定数とする.空間内の4点A$(1,\ 0,\ 3)$,B$(0,\ 4,\ -2)$,C$(4,\ -3,\ 0)$,D$(-7+5a,\ 14-8a,\ z)$が同じ平面上にあるとき,次の問いに答えよ.

(1)$z$を$a$を用いて表せ.
(2)$a$の値を変化させたとき,点Dは直線AB上の点Pおよび直線AC上の点Qを通る.P,Qの座標を求めよ.
(3)$\triangle$ABCの面積を$S_1$,$\triangle$APQの面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2011年 第3問
$xyz$空間の3点A$(5,\ 0,\ 0)$,B$(4,\ 1,\ 0)$,C$(5,\ 0,\ \sqrt{2})$が定める平面を$T$,$T$上にあって点Aを中心として半径$\sqrt{2}$をもつ円を$U$とする.このとき,以下の問に答えよ.

(1)点Pは円$U$の周上にある.$\angle \text{PAB}=\theta \ (0 \leqq \theta <2\pi)$とするとき,Pの座標$(u,\ v,\ r)$を$\theta$を用いて表せ.
(2)2点D$(10,\ 0,\ 0)$,Pを通る直線が$yz$平面と交わる点をQ$(0,\ Y,\ Z)$とする.$Y$と$Z$を$\theta$を用いて表せ.
(3)(2)の$Y,\ Z$から$\theta$を消去して,Qの軌跡が楕円になることを示せ.また,その楕円の概形を$yz$平面上に図示せよ.
岐阜大学 国立 岐阜大学 2011年 第4問
空間内の四面体OABCについて,$\angle \text{OAC}=\angle \text{OAB}=90^\circ,\ \angle \text{BOC}=\alpha,\ \angle \text{COA}=\beta,\ \angle \text{AOB}=\gamma,\ \text{OA}=1$とする.ただし,$\alpha,\ \beta,\ \gamma$はすべて鋭角で,$\displaystyle \cos \alpha=\frac{1}{4},\ \cos \beta=\frac{1}{\sqrt{3}},\ \cos \gamma=\frac{1}{\sqrt{3}}$である.三角形ABCの外接円を$S$とし,その中心をPとする.以下の問に答えよ.

(1)辺BCの長さを求めよ.
(2)$\theta=\angle \text{BAC}$とするとき,$\cos \theta$の値を求めよ.
(3)線分OPの長さを求めよ.
(4)円$S$の周上に点Dをとり,線分ADと線分DBの長さをそれぞれ$\text{AD}=x,\ \text{DB}=y$とする.$x+y$の最大値とそれを与える$x,\ y$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第1問
$xyz$空間に6点$\text{A}(1,\ 1,\ 0)$,$\text{B}(-1,\ 1,\ 0)$,$\text{C}(-1,\ -1,\ 0)$,$\text{D}(1,\ -1,\ 0)$,$\text{P}(\alpha,\ 0,\ \beta)$,$\text{Q}(-\alpha,\ 0,\ \beta)$が与えられている.ただし,$\alpha,\ \beta$は正の実数とする.
\[ \text{PB}=\text{PC}=\text{BC} \quad \text{かつ} \quad \text{PA}=\text{PD}=\text{PQ} \]
であるとき,以下の問いに答えよ.

(1)$\alpha,\ \beta$を求めよ.
(2)点P$_0(\alpha,\ 0,\ 0)$を考える.Pから直線ABに下ろした垂線と直線ABとの交点をHとし,Pから直線ADに下ろした垂線と直線ADとの交点をKとする.このとき,2つの三角形$\triangle$HP$_0$Pと$\triangle$PP$_0$Kが相似であることを示せ.
スポンサーリンク

「空間」とは・・・

 まだこのタグの説明は執筆されていません。