タグ「空間」の検索結果

13ページ目:全185問中121問~130問を表示)
東京工業大学 国立 東京工業大学 2012年 第6問
$xyz$空間に$4$点$\mathrm{P}(0,\ 0,\ 2)$,$\mathrm{A}(0,\ 2,\ 0)$,$\mathrm{B}(\sqrt{3},\ -1,\ 0)$,$\mathrm{C}(-\sqrt{3},\ -1,\ 0)$をとる.四面体$\mathrm{PABC}$の$x^2 +y^2 \geqq 1$をみたす部分の体積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第2問
$a^2+b^2=1$を満たす正の実数$a,\ b$の組$(a,\ b)$の全体を$S$とする.$S$に含まれる$(a,\ b)$に対し,$xyz$空間内に3点P$(a,\ b,\ b)$,Q$(-a,\ b,\ b)$,R$(0,\ 0,\ b)$をとる.また原点をOとする.このとき以下の各問いに答えよ.

(1)三角形OPQを$x$軸のまわりに1回転してできる立体を$F_1$とする.$(a,\ b)$が$S$の中を動くとき,$F_1$の体積の最大値を求めよ.
(2)三角形PQRを$x$軸のまわりに1回転してできる立体を$F_2$とする.$\displaystyle a=b=\frac{1}{\sqrt{2}}$のとき,$F_2$の$xy$平面による切り口の周を$xy$平面上に図示せよ.
(3)三角形OPRを$x$軸のまわりに1回転してできる立体を$F_3$とする.$(a,\ b)$が$S$の中を動くとき,$F_3$の体積の最大値を求めよ.
東京農工大学 国立 東京農工大学 2012年 第2問
空間のベクトル$\overrightarrow{a},\ \overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{a}=\left( \frac{1}{2},\ \frac{\sqrt{3}}{2},\ 0 \right),\quad \overrightarrow{p}=\left( 1,\ \frac{\sqrt{3}}{3},\ 1 \right),\quad \overrightarrow{q}=(-1,\ \sqrt{3},\ 2) \]
で定める.また$\alpha=\overrightarrow{p} \cdot \overrightarrow{a},\ \beta=\overrightarrow{q} \cdot \overrightarrow{a}$とおく.次の問いに答えよ.

(1)$\overrightarrow{b}=\overrightarrow{p}-\alpha \overrightarrow{a}$とする.$\overrightarrow{b}$を成分で表せ.
(2)$\displaystyle \overrightarrow{c}=\overrightarrow{q}-\beta \overrightarrow{a}-\frac{\overrightarrow{q} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}$とする.$\overrightarrow{c}$を成分で表せ.
(3)座標空間の原点を$\mathrm{O}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$となる3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$に対して,四面体$\mathrm{OABC}$の体積$V$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
山口大学 国立 山口大学 2012年 第2問
点$\mathrm{O}$を原点とする空間内に2点$\mathrm{P}(1,\ 1,\ 2)$,$\mathrm{Q}(-1,\ a,\ b)$があり,$\mathrm{OP}=\mathrm{OQ}$かつ$\angle \mathrm{POQ}=60^\circ$が成り立っている.ただし,$a<0$とする.このとき,次の問いに答えなさい.

(1)$a,\ b$の値を求めなさい.
(2)3点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面上において,$\mathrm{Q}$とは異なる点$\mathrm{R}(x,\ y,\ z)$が$\mathrm{OP}=\mathrm{OR}$かつ$\angle \mathrm{POR}=60^\circ$をみたすように$x,\ y,\ z$の値を定めなさい.
滋賀医科大学 国立 滋賀医科大学 2012年 第1問
$xyz$空間内の$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}=(x,\ y,\ z)$を考え,$\displaystyle \overrightarrow{p^\prime}=\frac{\overrightarrow{p}}{|\overrightarrow{p}|}$とおく.

(1)$\overrightarrow{p^\prime}$の大きさを求めよ.
(2)$\overrightarrow{p}$と$x$軸,$y$軸,$z$軸の正の向きとのなす角をそれぞれ$\alpha,\ \beta,\ \gamma$とおくとき,$\overrightarrow{p^\prime}=(\cos \alpha,\ \cos \beta,\ \cos \gamma)$を示せ.
(3)$\overrightarrow{p}=(3,\ 4,\ 12)$とする.頂点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a_1,\ a_2,\ a_3)$,$\mathrm{B}(b_1,\ b_2,\ b_3)$の$\triangle \mathrm{OAB}$について,$\overrightarrow{a}=(a_1,\ a_2,\ a_3)$,$\overrightarrow{b}=(b_1,\ b_2,\ b_3)$はともに$\overrightarrow{p}$に垂直とする.$\triangle \mathrm{OAB}$の面積を$S$とおくとき,$xy$平面上の点$\mathrm{O}$,$\mathrm{A}^\prime(a_1,\ a_2,\ 0)$,$\mathrm{B}^\prime(b_1,\ b_2,\ 0)$が作る$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の面積を$S$を用いて表せ.
東京海洋大学 国立 東京海洋大学 2012年 第5問
空間内に三角形$\mathrm{ABC}$と定点$\mathrm{O}$を中心とする半径$1$の球面$S$とがある.点$\mathrm{P}$が$S$上のすべての点を動くときの$\mathrm{AP}^2+\mathrm{BP}^2+\mathrm{CP}^2$の最大値,最小値をそれぞれ$M,\ m$とするとき,次の問に答えよ.ただし,三角形$\mathrm{ABC}$の重心$\mathrm{G}$は$\mathrm{OG}>1$をみたすものとする.

(1)$M=\mathrm{AQ}^2+\mathrm{BQ}^2+\mathrm{CQ}^2$となる$S$上の点を$\mathrm{Q}$,$m=\mathrm{AR}^2+\mathrm{BR}^2+\mathrm{CR}^2$となる$S$上の点を$\mathrm{R}$とするとき,$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{G}$は$1$直線上にあることを示せ.
(2)$\sqrt{M-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}-\sqrt{m-(\mathrm{GA}^2+\mathrm{GB}^2+\mathrm{GC}^2)}$の値は三角形$\mathrm{ABC}$に無関係に定まることを示し,その値を求めよ.
京都教育大学 国立 京都教育大学 2012年 第4問
空間において成分表示された$3$つのベクトルを
\[ \overrightarrow{a}=\left( \frac{\sqrt{3}+1}{2},\ 1,\ \frac{\sqrt{3}-1}{2} \right),\quad \overrightarrow{b}=(1,\ 0,\ 1),\quad \overrightarrow{c}=(1,\ 0,\ -1) \]
とする.これに対して原点$\mathrm{O}$に関する位置ベクトルが
\[ \overrightarrow{a}+(\cos t) \overrightarrow{b}+(\sin t) \overrightarrow{c} \]
である点$\mathrm{P}$を考える.次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{a}$,$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$,$\overrightarrow{b} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{c}$をそれぞれ計算せよ.
(2)$t$が$0$から$2\pi$まで動くとき,$|\overrightarrow{\mathrm{OP}}|$の最大値,最小値とそのときの$t$の値をそれぞれ求めよ.
山口大学 国立 山口大学 2012年 第2問
点$\mathrm{O}$を原点とする空間内に$2$点$\mathrm{P}(1,\ 1,\ 2)$,$\mathrm{Q}(-1,\ a,\ b)$があり,$\mathrm{OP}=\mathrm{OQ}$かつ$\angle \mathrm{POQ}={60}^\circ$が成り立っている.ただし,$a<0$とする.このとき,次の問いに答えなさい.

(1)$a,\ b$の値を求めなさい.
(2)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面上において,$\mathrm{Q}$とは異なる点$\mathrm{R}(x,\ y,\ z)$が$\mathrm{OP}=\mathrm{OR}$かつ$\angle \mathrm{POR}={60}^\circ$をみたすように$x,\ y,\ z$の値を定めなさい.
早稲田大学 私立 早稲田大学 2012年 第2問
空間に点$\mathrm{O}$と三角錐$\mathrm{ABCD}$があり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1,\ \mathrm{OD}=\sqrt{5}$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}$,$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{0}}$をみたしている.三角錐$\mathrm{ABCD}$に内接する球の半径を求めよ.
スポンサーリンク

「空間」とは・・・

 まだこのタグの説明は執筆されていません。