タグ「空欄補充」の検索結果

98ページ目:全1740問中971問~980問を表示)
北海道医療大学 私立 北海道医療大学 2013年 第2問
$0^\circ \leqq \theta<180^\circ$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{\sqrt{2}}$であるとき,以下の問に答えよ.

(1)以下の値を,それぞれ求めよ.
\[ \begin{array}{lll}
① \sin \theta \cos \theta & ② \sin^3 \theta+\cos^3 \theta & ③ \sin^4 \theta+\cos^4 \theta \\
④ \tan \theta+\displaystyle\frac{1}{\tan \theta} & ⑤ \tan^2 \theta+\displaystyle\frac{1}{\tan^2 \theta} & ⑥ \tan^3 \theta+\displaystyle\frac{1}{\tan^3 \theta} \phantom{\frac{[ ]}{[ ]}}
\end{array} \]
(2)$\cos \theta$と$\tan \theta$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第2問
次の問いに答えよ.

(1)角度$\theta$が$\displaystyle \frac{\pi}{2}<\theta<\pi$であって$\displaystyle \sin \theta+\cos \theta=-\frac{1}{5}$を満たすとき,
\[ \sum_{n=1}^\infty \sin^n \theta=\frac{[シ]}{[ス]},\quad \sum_{n=1}^\infty \cos^n \theta=\frac{[セ][ソ]}{[タ]} \]
である.
(2)初項$7$,公差$9$の等差数列$\{a_n\}$について,
\[ S_n=\frac{1}{a_1a_2}+\frac{1}{a_2a_3}+\frac{1}{a_3a_4}+\cdots +\frac{1}{a_na_{n+1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とすると,$\displaystyle S_n=\frac{1}{[チ]} \left( \frac{1}{[ツ]}-\frac{1}{[テ]n+[ト]} \right)$であって,$\displaystyle \lim_{n \to \infty}S_n=\frac{1}{[ナ][ニ]}$である.
金沢工業大学 私立 金沢工業大学 2013年 第5問
行列$\displaystyle A=\frac{1}{2} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$を考える.また,$E$を単位行列とする.

(1)$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) (0 \leqq \theta<2\pi)$と表すと,$\displaystyle \theta=\frac{[ア]}{[イ]}$である.
(2)$E+A+A^2=\left( \begin{array}{cc}
[ウ] & -\sqrt{[エ]} \\
\sqrt{[オ]} & [カ]
\end{array} \right)$,$A^3=\left( \begin{array}{cc}
[キ][ク] & [ケ] \\
[コ] & [サ][シ]
\end{array} \right)$,$E+A+A^2+A^3+A^4+A^5=\left( \begin{array}{cc}
[ス] & [セ] \\
[ソ] & [タ]
\end{array} \right)$である.
(3)$E+A+A^2+A^3+\cdots +A^{20}=\left( \begin{array}{cc}
[チ] & -\sqrt{[ツ]} \\
\sqrt{[テ]} & [ト]
\end{array} \right)$である.
金沢工業大学 私立 金沢工業大学 2013年 第6問
座標平面において,媒介変数$t$の範囲が$0 \leqq t \leqq \pi$であるサイクロイド
\[ x=t-\sin t,\quad y=1-\cos t \]
を$C$とする.

(1)曲線$C$上で$y$座標が最大になる点を$\mathrm{A}$とすると,$\mathrm{A}$の座標は$([ア],\ [イ])$である.
(2)直線$y=x+k$がこの曲線$C$の$0<t \leqq \pi$の部分に接するのは$\displaystyle t=\frac{\pi}{[ウ]}$のときであり,その接点の座標は$\displaystyle \left( \frac{\pi}{[エ]}-[オ],\ [カ] \right)$である.このとき,$\displaystyle k=[キ]-\frac{\pi}{[ク]}$である.
(3)曲線$C$と$x$軸,および点$\mathrm{A}$を通り$y$軸に平行な直線$\ell$で囲まれた図形の面積は$\displaystyle \frac{[ケ]}{[コ]} \pi$である.
(4)$(2)$の接線,$x$軸および直線$\ell$とで囲まれた図形から$(3)$の図形を除いた部分の面積は$\displaystyle \frac{\pi^2}{[サ]}-\frac{\pi}{[シ]}+[ス]$である.
金沢工業大学 私立 金沢工業大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{5}},\ y=\frac{1}{\sqrt{7}-\sqrt{5}}$のとき,
\[ x+y=\sqrt{[ア]},\quad xy=\frac{[イ]}{[ウ]},\quad x^2+y^2=[エ] \]
である.
(2)連立不等式$\left\{ \begin{array}{l}
2x+3 \leqq 4x-7 \\
|x-6|<3
\end{array} \right.$の解は$[オ] \leqq x<[カ]$である.
(3)関数$y=-2x^2+6x-1 (0 \leqq x \leqq 4)$は$\displaystyle x=\frac{[キ]}{[ク]}$で最大値$\displaystyle \frac{[ケ]}{[コ]}$をとり,$x=[サ]$で最小値$[シ][ス]$をとる.
(4)放物線$y=x^2-3x+2$を$x$軸方向に$3$,$y$軸方向に$-2$だけ平行移動してできる曲線は放物線$y=x^2-[セ]x+[ソ][タ]$である.
(5)$0^\circ \leqq \theta \leqq 180^\circ$とする.$\tan \theta=-\sqrt{6}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{[チ][ツ]}}{[テ]}$,$\displaystyle \cos \theta=-\frac{\sqrt{[ト]}}{[ナ]}$である.
(6)$(x^2-1)^{10}$の展開式における$x^4$の係数は$[ア][イ]$である.
(7)赤球$5$個,白球$3$個が入っている袋から$2$個の球を同時に取り出すとき,取り出した球が$2$個とも赤球である確率は$\displaystyle \frac{[ウ]}{[エ][オ]}$であり,取り出した$2$個の球が異なる色である確率は$\displaystyle \frac{[カ][キ]}{[ク][ケ]}$である.
(8)$\triangle \mathrm{ABC}$において$\mathrm{AB}=4$,$\mathrm{BC}=9$,$\mathrm{CA}=7$であるとき,$\displaystyle \cos A=\frac{[コ][サ]}{[シ]}$である.また,$\triangle \mathrm{ABC}$の面積は$[ス] \sqrt{[セ]}$である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$2x^2+3x-4=0$の解は$[$1$]$である.
(2)$a,\ b$を定数とし,$a>0$とする.$1$次関数$y=ax+b (-1 \leqq x \leqq 5)$の値域が$-2 \leqq y \leqq 2$であるとき,$a,\ b$の値は$a=[$2$]$,$b=[$3$]$である.
(3)放物線$y=x^2+x+2$と直線$y=ax-a$が共有点をもたないような定数$a$の値の範囲は$[$4$]$である.
(4)多項式$P(x)=x^3+ax^2+2x+5a$を$x-3$で割った余りが$5$であるとき,定数$a$の値は$[$5$]$であり,商は$[$6$]$である.
(5)半径$r$の円$x^2+y^2=r^2$と直線$4x+3y-5=0$が接するとき,$r=[$7$]$である.また,接点の座標は$[$8$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=1$,$\mathrm{BC}=\sqrt{3}$,$\mathrm{CA}=\sqrt{5}$のとき,$\cos A$の値は$[$9$]$,$\triangle \mathrm{ABC}$の面積は$[$10$]$である.また,$\triangle \mathrm{ABC}$の外接円の半径は$[$11$]$である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$30$以下の自然数の集合を全体集合$U$とし,$U$の部分集合で$3$の倍数の集合を$A$,$U$の部分集合で$4$の倍数の集合を$B$とする.このとき,要素を書き並べる方法で表すと,$A \cap B=[$1$]$,$\overline{A} \cap B=[$2$]$である.
(2)$3$個の数字$0,\ 1,\ 2$を,重複を許して並べてできる$5$桁の整数は$[$3$]$個ある.そのうち,$0,\ 1,\ 2$の$3$個の数字がすべて使われている整数は$[$4$]$個ある.
(3)関数$y=\sin x \cos x (0 \leqq x \leqq \pi)$の最小値は$[$5$]$であり,関数$\displaystyle y=\sin \left( x+\frac{2}{3} \pi \right) (0 \leqq x \leqq \pi)$の最大値は$[$6$]$である.
(4)円$(x-a)^2+y^2=4$と直線$\displaystyle y=x-\frac{a}{2}$が接するとき,定数$a$の値は$a=[$7$]$または$a=[$8$]$である.
(5)不等式$\displaystyle 9^{x+\frac{1}{2}}-10 \cdot 3^x+3 \leqq 0$の解は$[$9$]$である.
(6)方程式$\displaystyle \frac{1}{2}x^3+mx+n=0$の解の$1$つが$-1-\sqrt{3}i$のとき,実数$m,\ n$の値は$m=[$10$]$,$n=[$11$]$である.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$x=\sqrt{7}+3$,$y=\sqrt{7}-3$のとき,$xy=[$1$]$,$x^2+y^2=[$2$]$,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$3$]$である.
(2)$(x+9)^2-(x+9)-12$を因数分解すると$[$4$]$となる.
(3)連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
2x-3 \leqq 4x+6 \\
\displaystyle 3x+2 \leqq \frac{5x+3}{2}
\end{array} \right. \]
\setstretch{1.3}
の解は$[$5$]$である.
(4)方程式$2x^2-kx+3=0$が実数解をもたないような定数$k$の値の範囲は$[$6$]$である.
(5)$a,\ b$を定数とし,$a>0$,$b>0$とする.関数$y=ax^2$のグラフに,$y$軸上の点$(0,\ -b)$から接線を引く.$2$つの接線のうち,傾きが正であるものを$\ell$とし,接線$\ell$と放物線$y=ax^2$の接点を点$\mathrm{P}$とする.このとき,接線$\ell$の方程式と点$\mathrm{P}$の座標を$a$と$b$を用いて表すと,$\ell$の方程式は$[$7$]$,$\mathrm{P}$の座標は$[$8$]$となる.
(6)$2$次関数$y=f(x)$のグラフ$C$は,点$(0,\ 5)$を通り,$C$上の点$(-1,\ f(-1))$における接線は,$y=-11x+3$である.このとき,$f(x)=[$9$]$である.また,放物線$C$の$x \leqq 2$の部分と$x$軸および直線$x=2$で囲まれた部分の面積は$[$10$]$である.
(7)方程式$\displaystyle 5^{2x-3}-25^{x-1}+125^{\frac{2x}{3}}=121$の解は$[$11$]$である.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第1問
次の各設問に答えよ.

(1)$a,\ b$が有理数である$x^2+ax+b=0$の一つの解が$2+\sqrt{3}$であるとき方程式
\[ ax^2-7x+2b=0 \]
の解は$\displaystyle x=[アイ],\ \frac{[ウ]}{[エ]}$である.
(2)$x$を実数とすると$\displaystyle x^2+\frac{100}{x^2+1}$の最小値は$[オカ]$であり,そのときの$x$の値は$[キク],\ [ケ]$である.
(3)$\mathrm{RISUKU}$の$6$文字をバラバラにして一列に並べるとき,$\mathrm{KUSURI}$という文字になる確率は$\displaystyle \frac{[コ]}{[サシス]}$である.
(4)$\displaystyle \int_{-3}^3 (x+1) |x-2| \, dx$の値は$\displaystyle \frac{[セソ]}{[タ]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。