タグ「空欄補充」の検索結果

88ページ目:全1740問中871問~880問を表示)
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x^2-6x+4=0$の解を$\alpha,\ \beta$(ただし,$\alpha<\beta$)とするとき,$\alpha^2+\beta^2=[ア]$,$\sqrt{\alpha}-\sqrt{\beta}=[イ]$である.
(2)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字を重複せずに使って整数を作るとき,$4$桁の整数は$[ウ]$個,$2000$より大きな$4$桁の整数は$[エ]$個ある.
(3)$\displaystyle \cos \theta-\sin \theta=\frac{1}{\sqrt{2}} (0<\theta<\frac{\pi}{4})$のとき,$\cos \theta+\sin \theta=[オ]$であり,$\cos 2\theta=[カ]$である.
(4)$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とするとき,${12}^{2014}$は$[キ]$桁の整数である.また,$\displaystyle \left( \frac{1}{8} \right)^{10}$は小数第$[ク]$位に初めて$0$でない数字が現れる.
松山大学 私立 松山大学 2014年 第1問
次の各問の答えとして正しいものを選択肢から選びなさい.

(1)${10}^{-7} \times {10}^{-7}=[ア]$
\[ \nagamaruichi {10}^{14} \qquad \nagamaruni {10}^{-49} \qquad \nagamarusan {10}^{-14} \qquad \nagamarushi {10}^{49} \qquad \nagamarugo 10 \]
(2)$y={10}^{-x}$のグラフは$[イ]$である.
(図は省略)
(3)$\displaystyle y=\frac{Bx}{A+x}$($A,\ B$は正の定数)において,$\displaystyle y=\frac{B}{2}$のときの$x$の値は,$[ウ]$である.
\[ \nagamaruichi B \qquad \nagamaruni A \qquad \nagamarusan \frac{A}{B} \qquad \nagamarushi \frac{B}{A} \qquad \nagamarugo AB \]
次の空所$[エ]$~$[テ]$を埋めよ.

(4)$\displaystyle \frac{-12}{(x+1)(x-3)}=\frac{[エ]}{x+1}+\frac{[オカ]}{x-3}$

(5)$\displaystyle \left( \sqrt{8}-\sqrt{\frac{4}{3}} \right) \left( \sqrt{\frac{3}{4}}+\sqrt{18} \right)=[キク]-\sqrt{[ケ]}$
(6)$(4^{\frac{3}{2}})^{\frac{-4}{3}}=\frac{[コ]}{[サシ]}$
(7)$\displaystyle \frac{1}{2} \log_2 6-\log_4 24=[スセ]$
(8)$(4x^2+5x-4) \div (x-2)=[ソ]x+[タチ]$,余り$[ツテ]$
松山大学 私立 松山大学 2014年 第2問
次の空所$[ア]$~$[タ]$を埋めよ.

赤玉が$5$個,青玉が$7$個,黄玉が$4$個入っている袋から,玉を同時に$3$個取り出した.

(1)玉の色の組み合わせは$[アイ]$通りである.
(2)取り出した$3$つの玉がすべて同じ色である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)取り出した$3$つの玉がすべて別の色である確率は$\displaystyle \frac{[カ]}{[キ]}$である.
(4)赤玉を$2$点,青玉を$1$点,黄玉を$0$点とするとき,合計点が$4$点となる確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.
(5)$(4)$のように点数をつけるとき,合計点の期待値は$\displaystyle \frac{[スセ]}{[ソタ]}$である.
松山大学 私立 松山大学 2014年 第3問
次の空所$[ア]$~$[ソ]$を埋めよ.

図のような一辺が長さ$1$の正四面体$\mathrm{ABCD}$がある.
(図は省略)

(1)$\mathrm{A}$から底面$\mathrm{BCD}$に垂線$\mathrm{AH}$を下ろすとき,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$となり,正四面体$\mathrm{ABCD}$の体積は$\displaystyle \frac{\sqrt{[ウ]}}{[エオ]}$である.
(2)辺$\mathrm{AB}$上に点$\mathrm{P}$,辺$\mathrm{BC}$上に点$\mathrm{Q}$を$\mathrm{BP}=\mathrm{CQ}=x$となるようにとる.四面体$\mathrm{PBQD}$の体積は$\displaystyle x=\frac{[カ]}{[キ]}$のときに最大となり,これは正四面体$\mathrm{ABCD}$の体積の$\displaystyle \frac{[ク]}{[ケ]}$倍である.
(3)$\displaystyle x=\frac{[カ]}{[キ]}$のとき,$\angle \mathrm{DPQ}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{DPQ}$の面積は$\displaystyle \frac{\sqrt{[シス]}}{[セソ]}$である.
松山大学 私立 松山大学 2014年 第4問
次の空所$[ア]$~$[ト]$を埋めよ.

関数$\displaystyle f(x)=x^3+\frac{1}{2}ax^2-6x-\frac{1}{2}b$がある.ただし,
\[ a=\int_0^1 f(t) \, dt \cdots\cdots ① \qquad b=\int_{-1}^1 f(t) \, dt \cdots\cdots ② \]
とする.

(1)関数$f(x)$の不定積分は
\[ \int f(t) \, dt=\frac{1}{[ア]}t^4+\frac{1}{[イ]}at^3-[ウ]t^2-\frac{1}{[エ]}bt+C \quad \text{($C$は積分定数)} \]
であり,式$①$,$②$より$a=-[オ]$,$\displaystyle b=-\frac{[カ]}{[キ]}$である.
(2)$y=f(x)$が表す曲線$A$において,$\displaystyle x=\frac{3}{2}$のときの接線$B$を$y=g(x)$とおくと,関数$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]x-[コ] \]
であるので,
\[ g(x)=-\frac{[サシ]}{[ス]}x-\frac{[セソ]}{[タ]} \]
である.
接点以外の,曲線$A$と接線$B$の交点は,$\displaystyle \left( -\frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$である.
東京医科大学 私立 東京医科大学 2014年 第2問
次の$[ ]$を埋めよ.

(1)$2$つのベクトル$\overrightarrow{p}=(3 \cos t,\ 2 \sin t)$,$\displaystyle \overrightarrow{q}=\left( 3 \cos \left( t+\frac{\pi}{3} \right),\ 2 \sin \left( t+\frac{\pi}{3} \right) \right)$を考える.$t$が$0 \leqq t \leqq \pi$の範囲を動くとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$の最大値を$M$,最小値を$m$とすれば
\[ M=\frac{[アイ]}{[ウ]},\quad m=\frac{[エ]}{[オ]} \]
である.
(2)数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{n^5} \sum_{k=1}^n k^4 (n=1,\ 2,\ 3,\ \cdots)$と定める.このとき$\{a_n\}$は収束し,$\displaystyle \alpha=\lim_{n \to \infty}a_n$とすれば
\[ \alpha=\frac{[カ]}{[キ]} \]
である.さらにこれらの$a_n,\ \alpha$を用いて,数列$\{b_n\}$を$b_n=(\alpha-a_n)n (n=1,\ 2,\ 3,\ \cdots)$と定めれば$\{b_n\}$も収束し,$\displaystyle \beta=\lim_{n \to \infty}b_n$とすれば
\[ \beta=\frac{[クケ]}{[コ]} \]
である.
上智大学 私立 上智大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle \int_0^u te^{-t} \, dt=[ホ]ue^{-u}+[マ]e^{-u}+[ミ]$であり,これより
\[ \lim_{u \to \infty} \int_0^u te^{-t} \, dt=[ム] \]
である.
(2)定義域が実数全体であり値が実数である連続関数$f(x)$と正の定数$a$が次の$2$つの条件$(ⅰ)$,$(ⅱ)$を満たしているとする.

(i) 任意の実数$x$に対して
\[ \int_0^2 (3x+t)e^{t-x} f(t) \, dt=af(x) \]
が成り立つ.
(ii) $\displaystyle \lim_{u \to \infty} \int_0^u f(t) \, dt=1$が成り立つ.

このとき$a=[メ]+[モ] \sqrt{[ヤ]}$であり,また
\[ f(x)=(3Ax+B)e^{kx} \]
ただし,$A=[ユ]+[ヨ] \sqrt{[ラ]}$

\qquad $B=[リ]+[ル] \sqrt{[レ]}$
\qquad\,$k=[ロ]$

である.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$x+y=1$のとき$x^2+y^2$の最小値を求めなさい.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(5)円$x^2+y^2=2$と直線$y=x-1$の$2$つの交点を結ぶ線分の長さを求めなさい.
(6)$x^4-4$を複素数の範囲で因数分解しなさい.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(4)$x^4-4$を複素数の範囲で因数分解しなさい.
(5)$y=xe^{-x}$を微分しなさい.

(6)$\displaystyle \int_0^{\frac{\pi}{2}} x \sin x \, dx$を求めなさい.
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。