タグ「空欄補充」の検索結果

79ページ目:全1740問中781問~790問を表示)
北里大学 私立 北里大学 2014年 第3問
次の文中の$[ア]$~$[フ]$にあてはまる最も適切な数を答えなさい.

曲線$C$を$y=x^2-6x+13$とし,曲線$C$の接線で点$(p,\ 0)$を通るものを考える.接点の$x$座標を$\alpha$とすると,接線の傾きは$[ア] \alpha+[イ]$,接点の座標は$(\alpha,\ [ウ] \alpha^2+[エ] \alpha+[オ][カ])$であるから,接線の方程式は,
\[ y=([ア] \alpha+[イ])x+[キ] \alpha^2+[ク] \alpha+[ケ][コ] \]
と表される.この直線が点$(p,\ 0)$を通ることから$\alpha$は次の$2$次方程式
\[ \alpha^2+[サ]p \alpha+[シ]p+[ス][セ]=0 \]
を満たす.この方程式は$2$つの解を持つから接線は$2$本存在し,傾きが正である接線の方程式は,
\[ y=[ソ] \left( p+[タ]+\sqrt{p^2+[チ]p+[ツ][テ]} \right) (x+[ト]p) \]
と表される.
任意の$x$における曲線$C$の$y$座標と接線の$y$座標の差は,両者が$x=\alpha$で接しているので,
\[ (x-\alpha)^2 \]
と書ける.これを用いると,曲線$C$と$2$本の接線で囲まれた部分の面積$S$は,
\[ S=\frac{[ナ]}{[ニ]} \left( p^2+[チ]p+[ツ][テ] \right)^{\frac{[ヌ]}{[ネ]}} \]
である.$p$を変化させるとき,$S$は$p=[ノ]$で最小値$\displaystyle \frac{[ハ][ヒ]}{[フ]}$をとる.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$\displaystyle \tan 2\alpha=\frac{1}{2}$かつ$\tan \alpha>0$のとき,$\tan \alpha=[ア]$であり,また$\tan 3\alpha=[イ]$である.
(2)$r>0$に対し,中心$(-2,\ 7)$,半径$r^2+3r+4$の円$C_1$と中心$(3,\ -5)$,半径$2r^2+7r+1$の円$C_2$を考える.$C_1$と$C_2$がちょうど$3$本の共通接線をもつとき$r=[ウ]$であり,$C_1$と$C_2$が平行な共通接線をもつとき$r=[エ]$である.
九州産業大学 私立 九州産業大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{\sqrt{5}+1}{2} \right)^3+\left( \frac{\sqrt{5}-1}{2} \right)^3=[ア] \sqrt{[イ]}$である.
(2)関数$y=-3x^2+6x (0 \leqq x \leqq 3)$の最大値は$[ウ]$で,最小値は$[エオ]$である.
(3)$2$次方程式$x^2-3x+3=0$の解は$\displaystyle x=\frac{[カ] \pm \sqrt{[キ]}i}{[ク]}$である.
(4)$\displaystyle \sin \theta \cos \theta=\frac{1}{2} (0 \leqq \theta \leqq {90}^\circ)$のとき

(i) $\displaystyle \sin \theta+\cos \theta=\sqrt{[ケ]}$である.
(ii) $\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{\sqrt{[コ]}}{[サ]}$である.

(5)正方形$\mathrm{ABCD}$の各辺に赤,青,黄,緑のいずれかの色を塗る.ただし,同じ色を$2$度以上使ってもよいものとする.

(i) 辺$\mathrm{AB}$と辺$\mathrm{BC}$が赤色になる塗り方は$[シス]$通りある.
(ii) $3$つの辺が赤色で,残りの$1$つの辺は赤色以外になる塗り方は$[セソ]$通りある.
(iii) 向かい合う辺は同じ色であるが,すべての辺が同じ色とはなっていない塗り方は$[タチ]$通りある.
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)$を
\[ f(x)=\int_0^1 |(x-1)(x-t)| \, dt \]
とする.
$x \leqq [ア]$,$x \geqq [イ]$のとき,
\[ f(x)=[ウ]x^2+\frac{[エ]}{[オ]}x+\frac{[カ]}{[キ]} \]
$[ア]<x<[イ]$のとき,
\[ f(x)=[ク]x^3+[ケ]x^2+\frac{[コ]}{[サ]}x+\frac{[シ]}{[ス]} \]
である.また,関数$f(x)$は$x=[セ]$のとき,最小値$[ソ]$をとる.
(2)自然数$m,\ n$が
\[ \frac{1}{m}+\frac{1}{n}<\frac{1}{3} \]
を満たすとき,$\displaystyle \frac{1}{m}+\frac{1}{n}$の最大値は$\displaystyle \frac{[タ]}{[チ]}$である.
上智大学 私立 上智大学 2014年 第3問
$4$個の数字$1,\ 2,\ 3,\ 4$を使ってできる$4$ケタの整数を$x$とする.ただし,同じ数字をくり返し使ってよい.整数$x$の千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.

(1)整数$x$は全部で$[ヌ]$個できる.
(2)$a=d$となる$x$は全部で$[ネ]$個できる.
(3)$a,\ b,\ c,\ d$のうち,$3$個以上が同じ数字となる$x$は全部で$[ノ]$個できる.
(4)$a+b+c+d$が$12$以上となる$x$は全部で$[ハ]$個できる.
(5)$3$の倍数となる$x$は全部で$[ヒ]$個できる.また,$4$の倍数となる$x$は全部で$[フ]$個できる.
九州産業大学 私立 九州産業大学 2014年 第3問
放物線$y=x^2-4x+3$を$C$とする.放物線$C$と$x$軸との交点を$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とし,点$\mathrm{Q}$における放物線$C$の接線を$\ell$とする.

(1)放物線$C$の頂点の座標は$([ア],\ [イウ])$である.
(2)点$\mathrm{P}$の座標は$([エ],\ 0)$,点$\mathrm{Q}$の座標は$([オ],\ 0)$である.
(3)接線$\ell$の方程式は$y=[カ]x-[キ]$である.
(4)放物線$C$と$x$軸で囲まれた部分の面積は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)直線$y=-2x+k$が放物線$C$に接するとき,$k=[コ]$であり,この直線と接線$\ell$,および放物線$C$で囲まれた部分の面積は$\displaystyle \frac{[サ]}{[シ]}$である.
九州産業大学 私立 九州産業大学 2014年 第4問
$4$点$\mathrm{A}(-\sqrt{3},\ \sqrt{3},\ 1)$,$\mathrm{B}(\sqrt{3},\ -\sqrt{3},\ 1)$,$\mathrm{C}(-3,\ -3,\ 1)$,$\mathrm{D}$を頂点とする四面体$\mathrm{ABCD}$について考える.ただし,点$\mathrm{D}$の$z$座標は負の数であり,$|\overrightarrow{\mathrm{AD}}|=|\overrightarrow{\mathrm{BD}}|=|\overrightarrow{\mathrm{CD}}|=\sqrt{17}$とする.また,原点を$\mathrm{O}$とする.

(1)$|\overrightarrow{\mathrm{AB}}|=[ア]$である.
(2)点$\mathrm{D}$の座標は$[イ]$である.
(3)点$\mathrm{A}$を通り,$z$軸に垂直な平面の方程式は$[ウ]$である.
(4)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面上にあり,点$\mathrm{D}$との距離が最小となる点の位置ベクトルを$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと$[エ]$である.
(5)四面体$\mathrm{ABCD}$の体積は$[オ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
獨協医科大学 私立 獨協医科大学 2014年 第2問
$m$は正の整数とする.箱の中に,$1$と書かれたカードが$1$枚,$2$と書かれたカードが$2$枚,$3$と書かれたカードが$3$枚,$\cdots$,$2m$と書かれたカードが$2m$枚入っている.この箱の中から,$1$枚のカードを取り出し,書かれている数字を記録してからもとに戻す操作を$n$回繰り返す.

(1)箱の中にカードは全部で
\[ m([ア]m+[イ]) \text{枚} \]
入っている.
(2)$n=1$のとき,偶数のカードを取り出す確率は
\[ \frac{m+[ウ]}{[エ]m+[オ]} \]
である.
また,$n=2$のとき,記録した$2$個の数の和が偶数である確率は
\[ \frac{[カ]m^2+[キ]m+[ク]}{[ケ]m^2+[コ]m+[サ]} \]
である.
(3)記録した$n$個の数の和が偶数である確率を$p_n$とする.$p_n$を$m,\ n$を用いて表すと
\[ p_n=\frac{[シ]}{[ス]} \left( \frac{[セ]}{[ソ]m+[タ]} \right)^n+\frac{[チ]}{[ツ]} \]
である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。