タグ「空欄補充」の検索結果

56ページ目:全1740問中551問~560問を表示)
中部大学 私立 中部大学 2015年 第1問
次の$[ア]$から$[ス]$にあてはまる数字または符号を入れよ.

(1)$2$次関数$y=x^2-4x+3$のグラフは,$y=x^2+2x+5$のグラフを$x$軸方向に$[ア]$,$y$軸方向に$[イ][ウ]$平行移動したものである.
(2)$1$から$8$までの自然数の中から異なる$4$個の数を選ぶとき,最大数が$7$以下となるような選び方は$[エ][オ]$通りあり,最大数が$7$となるような選び方は$[カ][キ]$通りある.
(3)方程式$(\log_3 2)(\log_4 \sqrt{x})=\log_x 3$の解は,$\displaystyle x=\frac{[ク]}{[ケ]},\ [コ]$である.
(4)実数$x,\ y$が$3x^2+2y^2=6x$を満たすとき,$x^2+2y^2$の最大値は$\displaystyle \frac{[サ]}{[シ]}$であり,最小値は$[ス]$である.
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$8x^3-27y^3$を因数分解すると$[ア]$である.
(2)関数$f(x)=x^2-4x+5 (-1 \leqq x \leqq 3)$の最大値は$[イ]$,最小値は$[ウ]$である.
(3)$\displaystyle \frac{3+i}{1-2i}$を$a+bi$の形にすると,$a=[エ]$,$b=[オ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(4)不等式$\log_3 (1-x) \leqq \log_{\frac{1}{3}} (2x+1)$を満たす$x$の値の範囲は$[カ]$である.
(5)日曜日から土曜日までのうち$3$つの曜日を選び,毎週それらの曜日に出勤することとする.出勤する曜日の選び方は全部で$[キ]$通りある.また,$2$日は連続して出勤するが,$3$日は連続して出勤しないような曜日の選び方は$[ク]$通りある.
京都産業大学 私立 京都産業大学 2015年 第3問
$xy$平面上に$\triangle \mathrm{OAB}$がある.ただし,点$\mathrm{O}$は原点,点$\mathrm{A}$の座標は$(5,\ 0)$,点$\mathrm{B}$の$y$座標は正であり,$\mathrm{OB}=4$,$\angle \mathrm{AOB}=\theta$であるとする.さらに,$\triangle \mathrm{OAB}$の外側に,辺$\mathrm{AB}$を共有する正方形$\mathrm{ABCD}$がある.

(1)$\theta$を用いて表すと,$\mathrm{B}$の座標は$[ア]$であり,$\mathrm{C}$の座標は$[イ]$である.
(2)$\mathrm{C}$の$x$座標は$\theta=[ウ]$のとき最大値をとり,$\mathrm{C}$の$y$座標は$\theta=[エ]$のとき最大値をとる.
以下では,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$が一直線上にあるとする.
(3)$\mathrm{AB}=[オ]$である.$\triangle \mathrm{OAB}$の内接円の半径は$[カ]$である.
(4)$\triangle \mathrm{OAD}$の外接円の半径を求めよ.
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$\displaystyle x=\frac{2}{\sqrt{6}+\sqrt{2}},\ y=\frac{\sqrt{6}+\sqrt{2}}{2}$のとき,$x^3y+xy^3$の値は$[ ]$である.
(2)不等式$-3<x^2-4x<45$を満たす$x$の値の範囲は$[ ]$である.
(3)$3$次方程式$x^3-3x^2+4x-2=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とするとき$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=[ ]$である.
(4)座標平面上の$4$点$\mathrm{A}(2,\ -2)$,$\mathrm{B}(5,\ 1)$,$\mathrm{C}(6,\ -2)$,$\mathrm{D}(3,\ a)$に対し,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CD}}$が垂直になるのは$a=[ ]$のときである.
(5)$xy$平面上の$2$点$(0,\ 1)$,$(0,\ -1)$からの距離の和が$4$である曲線を
\[ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>0,\ b>0) \]
の形で表すと$(a,\ b)=[ ]$である.
京都産業大学 私立 京都産業大学 2015年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b)$がある.ここで,$a,\ b$は正の整数である.

$\triangle \mathrm{OAB}$の内部の格子点の個数を$f(a,\ b)$と表す.ここで,格子点とは,$x$座標,$y$座標がともに整数である点のことである.また,三角形の内部は,その三角形の頂点,辺を含まないものとする.
(1)$a=4,\ b=4$のとき,$\triangle \mathrm{OAB}$の内部の格子点は$3$個であり,それらの座標は$[ ]$である.したがって,$f(4,\ 4)=3$である.
(2)$f(4,\ 8)=[ ]$である.
(3)$2$以上の整数$n$に対し,$f(n,\ n)$を$n$の式で表すと$[ ]$である.
(4)$2$以上の整数$n$に対し,$f(n,\ 2n)$を$n$の式で表すと$[ ]$である.
(5)$n$を$2$以上の整数,$k$を$3$以上の整数とする.$f(n,\ kn)$を$n$と$k$の式で表すと$[ ]$である.
近畿大学 私立 近畿大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{3}i}{2}$のとき


$x^3-2x^2+4x+2=[ア]+\sqrt{[イ]}i$

$\displaystyle x^4-2x^3+3x^2-7x=\frac{[ウ][エ]-[オ] \sqrt{[カ]}i}{[キ]}$


である.ただし,$i$は虚数単位とする.
(2)$2$次方程式$x^2-4x-3=0$の正の解の整数部分を$a$,小数部分を$b$とすると


$a=[ク]$

$b=\sqrt{[ケ]}-[コ]$

$\displaystyle \frac{a-b}{a+b}=\frac{[サ] \sqrt{[シ]}-[ス][セ]}{[ソ]}$


である.
(3)不等式$\log_9 (2-x)^2-\log_{\frac{1}{3}} (x-1)>\log_3 (3-2x)$の解は
\[ \frac{[タ]-\sqrt{[チ]}}{[ツ]}<x<\frac{[テ]}{[ト]} \]
である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
近畿大学 私立 近畿大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{3}i}{2}$のとき


$x^3-2x^2+4x+2=[ア]+\sqrt{[イ]}i$

$\displaystyle x^4-2x^3+3x^2-7x=\frac{[ウ][エ]-[オ] \sqrt{[カ]}i}{[キ]}$


である.ただし,$i$は虚数単位とする.
(2)$2$次方程式$x^2-4x-3=0$の正の解の整数部分を$a$,小数部分を$b$とすると


$a=[ク]$

$b=\sqrt{[ケ]}-[コ]$

$\displaystyle \frac{a-b}{a+b}=\frac{[サ] \sqrt{[シ]}-[ス][セ]}{[ソ]}$


である.
(3)不等式$\log_9 (2-x)^2-\log_{\frac{1}{3}} (x-1)>\log_3 (3-2x)$の解は
\[ \frac{[タ]-\sqrt{[チ]}}{[ツ]}<x<\frac{[テ]}{[ト]} \]
である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第1問
以下の$(1)$~$(4)$の$[$1$]$~$[$4$]$に適切な値を答えなさい.ただし,$e$は自然対数の底とする.

(1)$A=e^2$とするとき,
\[ 8 \left( 1+\cos^3 \frac{\pi}{18} \right) \log_A e-\frac{3}{2} \left( 1+\cos \frac{\pi}{18} \right) \log_e A=[$1$] \]
である.
(2)$b$を正の定数,$x$を正の実数とする.方程式$\log_e x=bx$が異なる$2$つの実数解をもつのは$0<b<[$2$]$のときである.
(3)数列$\{c_n\} (n=1,\ 2,\ 3,\ \cdots)$を,初項$1$,公差$2$の等差数列とする.数列$\{c_n\}$の初項から第$n$項までの和$S_n$に対して$T_n=\log_e S_n$,$U_n=e^{T_n}$と定義する.数列$\{U_n\}$の初項から第$24$項までの和の値は$[$3$]$となる.

(4)定積分$\displaystyle \int_0^D \frac{2e^x}{2e^x+3} \, dx$の値は$[$4$]$である.ただし,$D=\log_e 3$とする.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。