タグ「空欄補充」の検索結果

50ページ目:全1740問中491問~500問を表示)
山口東京理科大学 私立 山口東京理科大学 2015年 第6問
角$\theta$は鈍角で,$\displaystyle \sin \theta=\frac{4}{5}$のとき,$\displaystyle \frac{6 \tan \theta+5}{5 \cos \theta+2}$の値は$[ヒ]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第7問
等式
\[ 3^{3x-1}=\sqrt{27} \]
を満たす$x$の値は$\displaystyle x=\frac{[フ]}{[ヘ]}$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第8問
曲線$y=x^3-2x^2-3x$と$x$軸で囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[ホ][マ]}{[ミ]}$である.
獨協医科大学 私立 獨協医科大学 2015年 第5問
$x>-1$で定義された関数$f(x)$は,等式
\[ (x+1)f(x)-\int_0^x f(t) \, dt=\log (x+1)+x-1 \]
を満たしている.

(1)このとき$f(0)=[アイ]$であり,さらに
\[ f^\prime(x)=\frac{x+[ウ]}{(x+[エ])^{\mkakko{オ}}} \]
である.
(2)これをもとに$f(x)$を求めると$f(x)=[カ]-[キ]$である.ただし,$[カ]$,$[キ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \log x \quad \nagamaruni \log (x+1) \quad \nagamarusan x \log (x+1) \quad \nagamarushi \frac{1}{x} \quad \nagamarugo \frac{1}{x+1} \quad \nagamaruroku \frac{x}{x+1} \]
(3)$a>0$とする.関数$g(x)=\log x$について,区間$[a,\ a+1]$で平均値の定理を用いると,$g(a+1)-g(a)=[ク]$となる実数の定数$c$が区間$[ケ]$に存在する.これを用いると自然数$m$に対する$f(e^m)$と$m$の大小は$f(e^m) [コ] m$となることがわかる.ただし,$[ク]$,$[ケ]$には,次の選択肢$\mathrm{I}$の$\nagamaruichi$~$\nagamarushichi$の中から,$[コ]$には,選択肢$\mathrm{II}$の$\nagamaruichi$~$\nagamarusan$の中から最も適切なものをそれぞれ一つずつ選ぶこと.

選択肢$\mathrm{I}$
$\displaystyle \nagamaruichi c \qquad \nagamaruni c+1 \qquad \nagamarusan \frac{1}{c} \qquad \nagamarushi \frac{1}{c+1} \qquad \nagamarugo \log c$
$\nagamaruroku [a,\ a+1] \qquad \nagamarushichi (a,\ a+1)$
選択肢$\mathrm{II}$
$\displaystyle \nagamaruichi < \qquad \nagamaruni > \qquad \nagamarusan =$

(4)さらに
\[ \int_0^{e^x-1} f(t) \, dt=(x-[サ])(e^x-[シ]) \]
となるので,自然数$n$に対して$\displaystyle p(n)=e^{\frac{2}{3n}}-1$とおくと
\[ \lim_{n \to \infty} n \int_0^{p(n)} f(t) \, dt=\frac{[スセ]}{[ソ]} \]
である.
南山大学 私立 南山大学 2015年 第1問
$[ ]$の中に答を入れよ.

(1)$a,\ b$を実数とする.$x$の方程式$x^3+ax^2+6x+b=0$の$1$つの解が$x=-1+i$であるとき,$a,\ b$の値を求めると$(a,\ b)=[ア]$であり,残りの解は$x=[イ]$である.
(2)$x>0$とする.不等式$(\log_2 x)^2-5 \log_2 x-6<0$を解くと$[ウ]$である.また,$x$の方程式$x^{\log_2 x}=2^a x^5$が解をもつような$a$の値の範囲を求めると$[エ]$である.
(3)実数$a,\ b,\ c,\ k$が$5a-b-c=ka$,$-a+5b-c=kb$,$-a-b+5c=kc$,$abc \neq 0$を満たしている.このとき,$k$の値を求めると$k=[オ]$であり,$\displaystyle R=\frac{(a+b)(b+c)(c+a)}{abc}$の値を求めると$R=[カ]$である.
(4)$4$人がじゃんけんを$1$回するとき,$1$人だけが勝つ確率は$[キ]$であり,誰も勝たない確率は$[ク]$である.ただし,各人がグー,チョキ,パーを出す確率は,それぞれ$\displaystyle \frac{1}{3}$である.
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)さいころを$n$回投げて,第$1$回から第$n$回までに出た目$n$個の積を$X_n$とする.$X_n$が$3$で割り切れる確率は$[ア]$であり,$X_n$が$2$で割り切れる確率は$[イ]$である.また,$X_n$が$6$で割り切れる確率を$p_n$とすると$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (1-p_n)=[ウ]$である.
(2)連立不等式
\[ x^2+4y^2 \leqq 4,\quad x+2y \geqq 2 \]
の表す領域を$D$とする.点$(x,\ y)$が$D$内を動くとき,$2x+y$の最小値は$[エ]$である.また,最大値は$[オ]$であり,そのときの$x,\ y$は$x=[カ]$,$y=[キ]$である.
(3)正整数$n=1,\ 2,\ 3,\ \cdots$に対し$\displaystyle \int_0^\pi \sin^2 nx \, dx=[ク]$であり,異なる正整数$m,\ n$に対しては$\displaystyle \int_0^\pi \sin mx \sin nx \, dx=[ケ]$である.したがって,$\displaystyle f(x)=\sum_{n=1}^{15} n \sin nx$とすると$\displaystyle \int_0^\pi \{f(x)\}^2 \, dx=[コ]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第1問
$\displaystyle x=\frac{2}{\sqrt{3}+3},\ y=\frac{2}{\sqrt{3}-3}$のとき
\[ x-y=[ア],\ xy=-\frac{[イ]}{[ウ]},\ x^2+y^2=\frac{[エ]}{[オ]} \]
となる.
山口東京理科大学 私立 山口東京理科大学 2015年 第2問
頂点が点$(-2,\ 1)$で点$(-1,\ 3)$を通る放物線の方程式は
\[ y=[カ]x^2+[キ]x+[ク] \]
で与えられる.
山口東京理科大学 私立 山口東京理科大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={60}^\circ$,$\mathrm{AB}=3$,$\mathrm{BC}=7$のとき,$\mathrm{AC}$は$[ケ]$である.さらに,$\triangle \mathrm{ABC}$の面積は$[コ] \sqrt{[サ]}$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第5問
式$4x^4+62$を整式$A$で割ると,商が$2x^3-4x^2+8x-16$,余りが$126$である.整式$A$を求めると,$[ソ]x+[タ]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。