タグ「空欄補充」の検索結果

49ページ目:全1740問中481問~490問を表示)
東京経済大学 私立 東京経済大学 2015年 第4問
曲線$y=-x^2+kx+1$と$y=x^3$は点$\mathrm{P}$で接し,かつ点$\mathrm{P}$における接線が一致する.このとき,点$\mathrm{P}$の座標は$(-[ソ],\ -[タ])$,$k=[チ]$であり,その接線の方程式は$y=[ツ]x+[テ]$である.
東京経済大学 私立 東京経済大学 2015年 第5問
赤玉$6$個と白玉$3$個が入っている袋から,玉を同時に$3$個取り出すとき,取り出した玉が,

(1)$3$個とも赤玉である確率は,$\displaystyle \frac{[ト]}{[ナニ]}$である.

(2)$2$個だけ同じ色である確率は,$\displaystyle \frac{[ヌ]}{[ネ]}$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第1問
式$(x^2+3x+2)(x^2-3x+2)$を展開すると,$x^{\mkakko{ア}}-[イ]x^2+[ウ]$となる.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
獨協医科大学 私立 獨協医科大学 2015年 第3問
$a,\ b$を実数の定数とする.$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(1,\ 2,\ 0)$,$\mathrm{B}(2,\ 0,\ 4)$,$\mathrm{C}(a,\ b,\ 1)$がある.

三角形$\mathrm{OAB}$において,点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$の交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標は
\[ \left( \frac{[ア]}{[イ]},\ \frac{[ウエ]}{[オ]},\ \frac{[カ]}{[キ]} \right) \]
である.
点$\mathrm{A}$から直線$\mathrm{OB}$に下ろした垂線と線分$\mathrm{OH}$の交点を$\mathrm{K}$とする.点$\mathrm{K}$の座標は
\[ \left( \frac{[ク]}{[ケ]},\ \frac{[コ]}{[サ]},\ \frac{[シ]}{[ス]} \right) \]
である.
$\overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{BC}}$に垂直で,$\overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{AC}}$に垂直であるとする.このとき$a=[セソ]$,$\displaystyle b=\frac{[タ]}{[チ]}$である.以下で,$a,\ b$はこの値であるとする.
線分$\mathrm{CK}$上に$\overrightarrow{\mathrm{OL}}$が$\overrightarrow{\mathrm{AC}}$に垂直になるように点$\mathrm{L}$をとるとき
\[ \overrightarrow{\mathrm{OL}}=\left( [ツ],\ [テ],\ \frac{[ト]}{[ナ]} \right) \]
である.そのとき,$\overrightarrow{\mathrm{LK}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$に垂直である.
平面$\mathrm{OAB}$において,三角形$\mathrm{KAB}$の外接円の周上に点$\mathrm{P}$をとるとき,線分$\mathrm{LP}$の長さの最大値は$\displaystyle \frac{\sqrt{[ニヌ]}}{[ネ]}$である.
獨協医科大学 私立 獨協医科大学 2015年 第4問
$xy$平面上に直線$\displaystyle \ell:y=\frac{1}{2}x$がある.自然数$n$に対して,この平面上に,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$を次のように定める.
\[ \left\{ \begin{array}{l}
\displaystyle \mathrm{A}_1 \left( \frac{1}{3},\ 0 \right) \\
\text{正方形の頂点は時計回りに$\mathrm{A}_n,\ \mathrm{B}_n,\ \mathrm{C}_n,\ \mathrm{D}_n$とする.} \\
\text{頂点$\mathrm{A}_n,\ \mathrm{D}_n$は$x$軸上にあり,頂点$\mathrm{B}_n$は直線$\ell$上にある.} \\
\text{頂点$\mathrm{A}_n$の$x$座標は頂点$\mathrm{D}_n$の$x$座標より小さい.} \\
\text{頂点$\mathrm{D}_n$を頂点$\mathrm{A}_{n+1}$とする.}
\end{array} \right. \]
頂点$\mathrm{A}_n$の$x$座標を$x_n$,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の面積を$S_n$とする.

(1)正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の$1$辺の長さは$\displaystyle \frac{[ア]}{[イ]}x_n$である.
また,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の対角線の交点の座標は$\displaystyle \left( \frac{[ウ]}{[エ]}x_n,\ \frac{[オ]}{[カ]}x_n \right)$であるから,すべての自然数$n$に対して正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の対角線の交点は直線$\displaystyle y=\frac{[キ]}{[ク]}x$上にある.
(2)$x_{n+1}$を$x_n$で表すと$\displaystyle x_{n+1}=\frac{[ケ]}{[コ]}x_n$である.よって$\displaystyle x_n=\frac{3^{\mkakko{サ}}}{2^{\mkakko{シ}}}$である.ただし,$[サ]$,$[シ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.
\[ \nagamaruichi -n-1 \qquad \nagamaruni -n \qquad \nagamarusan n-2 \qquad \nagamarushi n-1 \qquad \nagamarugo n \qquad \nagamaruroku n+1 \]
(3)$\displaystyle T_n=\sum_{k=1}^n S_k$とおく.$T_n>1$となる最小の$n$は$[ス]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第2問
$2$次方程式$x^2-6x+7=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha-5$,$\beta-5$を解とする$2$次方程式は$x^2+[エ]x+[オ]=0$となる.
山口東京理科大学 私立 山口東京理科大学 2015年 第3問
$1$個のさいころを続けて$3$回投げる.

(i) 出る目の数がすべて異なる確率を考える.出る目の数がすべて異なる場合は$[カ][キ][ク]$通りであることから,出る目の数がすべて異なる確率は$\displaystyle \frac{[ケ]}{[コ]}$である.
(ii) 出る目の数の積が偶数になる確率を考える.$1$回も偶数が出ない場合は$[サ][シ]$通りであり,また,$1$回でも偶数が出ると積は偶数になる.これより,出る目の数の積が偶数になる確率は$\displaystyle \frac{[ス]}{[セ]}$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第4問
数列
\[ 2 \cdot 3,\ 5 \cdot 5,\ 8 \cdot 7,\ 11 \cdot 9,\ \cdots,\ a_n \cdot b_n,\ \cdots \]
の初項から第$n$項までの和$S_n$を求めることを考える.このとき,この数列の第$n$項$a_n \cdot b_n$が
\[ a_n \cdot b_n=\left( [ソ]n-[タ] \right) \cdot \left( [チ]n+[ツ] \right) \]
と表されるので,
\[ S_n=\frac{1}{2}n \left( [テ]n^2+[ト]n+[ナ] \right) \]
を得る.
山口東京理科大学 私立 山口東京理科大学 2015年 第5問
式$\displaystyle \frac{(2xy^2)^3}{(5x^3y)^2}$を約分して簡単にすると,$\displaystyle \frac{[ニ]y^{\mkakko{ヌ}}}{[ネ][ノ]x^{\mkakko{ハ}}}$となる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。