タグ「空欄補充」の検索結果

47ページ目:全1740問中461問~470問を表示)
金沢工業大学 私立 金沢工業大学 2015年 第3問
平面上に異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,それらは一直線上にないとする.このとき,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.線分$\mathrm{OA}$を$5:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に外分する点を$\mathrm{Q}$とする.また,線分$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ア]}{[イ]} \overrightarrow{a}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=\frac{[ウ]}{[エ]} \overrightarrow{b}$である.

(2)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[オ]}{[カキ]} \overrightarrow{a}+\frac{[ク]}{[ケコ]} \overrightarrow{b}$である.

(3)点$\mathrm{R}$は線分$\mathrm{AB}$を$[サ]:[シ]$に内分する.
金沢工業大学 私立 金沢工業大学 2015年 第3問
座標平面において,極方程式$r=2 \cos \theta$で表される曲線を$C$とし,$C$上において極座標が$\displaystyle \left(\sqrt{2},\ \frac{\pi}{4} \right)$,$(2,\ 0)$である点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.また,$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とし,$\mathrm{A}$を中心とし,線分$\mathrm{AB}$を半径にもつ円を$D$とする.

(1)曲線$C$は直交座標において点$([ア],\ [イ])$を中心とし,半径が$[ウ]$の円を表す.
(2)直線$\ell$の極方程式は$\displaystyle r \cos \left( \theta-\displaystyle\frac{\pi}{[エ]} \right)=\sqrt{[オ]}$である.
(3)円$D$の極方程式は$\displaystyle r=[カ] \sqrt{[キ]} \cos \left( \theta-\frac{\pi}{[ク]} \right)$である.
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の条件によって定められる関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を考える.
\[ f_1(x)=(3x+5)e^{2x},\quad f_{n+1}(x)={f_n}^{\prime}(x) \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$f_2(x)=([ア]x+[イウ])e^{2x}$である.
(2)$f_n(x)=(a_nx+b_n)e^{2x}$($a_n,\ b_n$は定数)とおくと,
\[ a_1=[エ],\quad b_1=[オ],\quad \left\{ \begin{array}{l}
a_{n+1}=[カ]a_n \\
b_{n+1}=a_n+[キ]b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
(3)$a_n=[ク] \cdot {[ケ]}^{n-1} (n=1,\ 2,\ 3,\ \cdots)$である.
(4)$\displaystyle c_n=\frac{b_n}{2^n}$とおくと,$\displaystyle c_{n+1}=c_n+\frac{[コ]}{[サ]} (n=1,\ 2,\ 3,\ \cdots)$である.よって,$\displaystyle c_n=\frac{[シ]n+[ス]}{[セ]}$,つまり$b_n={[ソ]}^{n-2}([タ]n+[チ]) (n=1,\ 2,\ 3,\ \cdots)$である.ゆえに
\[ f_n(x)={[ツ]}^{n-2}([テ]x+[ト]n+[ナ])e^{2x} \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
東北医科薬科大学 私立 東北医科薬科大学 2015年 第3問
$xy$平面上の点$\mathrm{P}$が原点$\mathrm{O}(0,\ 0)$から次の規則に従って動くとする.表,裏がでる確率が等しい硬貨を$2$枚投げて,表が$2$枚でたら右に$1$移動し,裏が$2$枚でたら上に$1$移動し,表$1$枚裏$1$枚でたら右に$1$移動し,さらに上に$1$移動する.以下,この試行を繰り返す.従って,最初表$1$枚裏$1$枚でたら点$\mathrm{P}$の座標は$(1,\ 1)$で,次に表$2$枚でたら点$\mathrm{P}$の座標は$(2,\ 1)$である.このとき,次の問に答えなさい.

(1)この試行を$3$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)この試行を$4$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)この試行を$5$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[カキ]}{[クケコ]}$である.また,そのうち点$\mathrm{P}$が点$(1,\ 1)$を通って座標が$(3,\ 3)$である確率は$\displaystyle \frac{[サ]}{[シスセ]}$である.
(4)この試行を$7$回繰り返したとき,点$\mathrm{P}$が$(3,\ 3)$を通るか,$(3,\ 3)$である確率は$\displaystyle \frac{[ソタチ]}{\fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[15mm][c]{\small{ツテトナ}}}}$である.
京都産業大学 私立 京都産業大学 2015年 第2問
$a$を$0$以上の実数とし,
\[ S(a)=\int_0^1 |x^2-ax| \, dx \]
とする.

(1)$S(2)=[ア]$である.

(2)$\displaystyle S \left( \frac{1}{2} \right)=[イ]$である.

(3)$a>1$のとき,$S(a)=[ウ]$である.
$0 \leqq a \leqq 1$のとき,$S(a)=[エ]$である.
(4)$S(a)$は$a=[オ]$のとき最小値$[カ]$をとる.
近畿大学 私立 近畿大学 2015年 第2問
自然数からなる数列$\{a_n\}$と$\{b_n\}$を,$a_n+b_n \sqrt{5}={(3+\sqrt{5})}^n$によって定める.

(1)$a_3=[ア][イ],\ b_3=[ウ][エ]$であり,また$a_4=[オ][カ][キ],\ b_4=[ク][ケ][コ]$である.
(2)$a_{n+1}=[サ]a_n+[シ]b_n$であり,また$b_{n+1}=a_n+[ス]b_n$である.ここで$c_n=a_n-b_n \sqrt{5}$とおくと,$c_n={([セ]-\sqrt{[ソ]})}^n$となる.
(3)$b_n$の値が初めて$10000$を超えるのは$n=[タ]$のときである.また,$\displaystyle \frac{c_n}{a_n}$の値が初めて$\displaystyle \frac{1}{10000}$より小さくなるのは$n=[チ]$のときである.
近畿大学 私立 近畿大学 2015年 第2問
自然数からなる数列$\{a_n\}$と$\{b_n\}$を,$a_n+b_n \sqrt{5}={(3+\sqrt{5})}^n$によって定める.

(1)$a_3=[ア][イ],\ b_3=[ウ][エ]$であり,また$a_4=[オ][カ][キ],\ b_4=[ク][ケ][コ]$である.
(2)$a_{n+1}=[サ]a_n+[シ]b_n$であり,また$b_{n+1}=a_n+[ス]b_n$である.ここで$c_n=a_n-b_n \sqrt{5}$とおくと,$c_n={([セ]-\sqrt{[ソ]})}^n$となる.
(3)$b_n$の値が初めて$10000$を超えるのは$n=[タ]$のときである.また,$\displaystyle \frac{c_n}{a_n}$の値が初めて$\displaystyle \frac{1}{10000}$より小さくなるのは$n=[チ]$のときである.
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
東洋大学 私立 東洋大学 2015年 第4問
一般項が$\displaystyle a_n=\sin \frac{3n \pi}{7}$で定義される数列$\{a_n\}$の最初の$n$項の和を$\displaystyle S_n=\sum_{k=1}^n a_k$とおく.次の各問に答えよ.

(1)$a_n>0$となるための必要十分条件は,$n$を$[アイ]$で割った余りが$1$,$2$,$[ウ]$,$[エ]$,$[オカ]$,$[キク]$のいずれかとなることである.ただし,$[ウ]<[エ]<[オカ]<[キク]$とする.
(2)任意の自然数$n$に対し,$a_{n+\mkakko{ケ}}=-a_n$が成り立つ.
(3)$a_n$が最大となるための必要十分条件は,$n$を$[コサ]$で割った余りが$[シ]$または$[ス]$となることである.ただし,$[シ]<[ス]$とする.
(4)$S_n$が最大となるための必要十分条件は,$n$を$[セソ]$で割った余りが$[タ]$または$[チツ]$となることである.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。