タグ「空欄補充」の検索結果

43ページ目:全1740問中421問~430問を表示)
東邦大学 私立 東邦大学 2015年 第9問
三角形$\mathrm{ABC}$の内部に$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があり,$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{1}{2} \overrightarrow{\mathrm{AD}}$,$\displaystyle \overrightarrow{\mathrm{BF}}=\frac{1}{3} \overrightarrow{\mathrm{BE}}$,$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{3}{5} \overrightarrow{\mathrm{CF}}$を満たしている.このとき,$\displaystyle \overrightarrow{\mathrm{BE}}=\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{BA}}+\frac{[サ]}{[シ]} \overrightarrow{\mathrm{BC}}$である.
東邦大学 私立 東邦大学 2015年 第10問
次のデータは,ある高校$3$年生$9$人の$100$点満点の試験の結果である.
\[ 65,\ 83,\ 64,\ 69,\ 89,\ 68,\ 77,\ 70,\ 81 \]
データを順に,$x_1,\ x_2,\ x_3,\ \cdots,\ x_9$と表す.このとき,$\displaystyle \sum_{i=1}^9 (x_i-\theta)^2$を最小にする$\theta$の値は$[スセ]$である.また,$\displaystyle \sum_{i=1}^9 |x_i-\theta|$を最小にする$\theta$の値は$[ソタ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ア]$~$[ヒ]$にあてはまる$0$から$9$までの数字,および,$[あ]$にあてはまる$+$か$-$の符号を入れよ.

$p$を$3$で割り切れない整数とする.このとき,整数$a$と$b$に対し,

「$pa-b$が$3$の倍数ならば,$a-pb$も$3$の倍数になる.」

がわかる.これを認めて,$2$つの整数列$\{a_n\},\ \{b_n\}$を以下のように定める.$a_1=1$とし,$b_1$は$0$,$1$,$2$いずれかの数で$pa_1-b_1$が$3$の倍数になるようなものとし,$n=2,\ 3,\ \cdots$に対し,$a_n,\ b_n$を次のように定める.
\begin{itemize}
$\displaystyle a_n=\frac{1}{3}(a_{n-1}-pb_{n-1})$
$b_n$は,$0,\ 1,\ 2$いずれかの数で$pa_n-b_n$が$3$の倍数となるようなものとする.
\end{itemize}
このように定められた$2$つの整数列$\{a_n\},\ \{b_n\}$について,以下の各問いに答えよ.


(1)$p=8$のとき,$b_1=[ア]$,$a_2=-[イ]$,$b_2=[ウ]$,$a_3=-[エ]$,$b_4=[オ]$,$a_4=-[カ]$,$b_4=[キ]$,$a_5=-[ク]$,$b_5=[ケ]$,$a_6=-[コ]$となる.
(2)$p=-13$のとき,$a_{190}=[サ]$,$b_{190}=[シ]$,$a_{191}=[ス]$,$b_{191}=[セ]$,$a_{192}=[ソ]$,$b_{192}=[タ]$となる.
(3)$p=-13$のとき,$\displaystyle \sum_{k=1}^{200} a_k=[チ][ツ][テ]$となる.
(4)$p=-13$のとき,$\displaystyle \sum_{k=1}^{30} k^2b_k=\kakkofour{ト}{ナ}{ニ}{ヌ}$となる.
(5)$p=3^{11}+1$のとき,数列$\{b_n\}$の第$2$項目以降で$0$でない値が初めて出てくるのは,第$[ネ][ノ]$項目であり,その項の値は$[ハ]$である.
(6)数列$\{b_n\}$のすべての項が$1$となるような整数$p$で絶対値が最小となるものは,$[あ] [ヒ]$である.$0$のときは,$+0$で表すものとする.
東京理科大学 私立 東京理科大学 2015年 第5問
$n$を自然数とする.$k=1,\ 2,\ 3$に対して,次の条件$\mathrm{P}_k$を考える.

$\mathrm{P}_k: \quad k \leqq r \leqq n-k$を満たすすべての自然数$r$に対して,$\comb{n}{r}$は偶数である.

(1)$2 \leqq n \leqq 20$,$k=1$とする.$\mathrm{P}_1$を満たす$n$は全部で$[ア]$個ある.このうち,最大のものは$[イ][ウ]$である.
(2)$4 \leqq n \leqq 1000$,$k=2$とする.$\mathrm{P}_2$を満たす$n$は全部で$[エ][オ]$個ある.このうち,最大のものは$[カ][キ][ク]$である.
(3)$6 \leqq n \leqq {10}^{16}$,$k=3$とする.$\mathrm{P}_3$を満たす$n$は全部で$[ケ][コ][サ]$個ある.
(注意:$0.3010<\log_{10}2<0.3011$)
東邦大学 私立 東邦大学 2015年 第11問
$x$と$y$を変数とする関数$f(x,\ y)=9^{x+1}3^y+3^{2x-y}+3^{y+3}9^{-x}+3^{1-2x-y}$は$\displaystyle (x,\ y)=\left( \frac{[ア]}{[イ]},\ [ウエ] \right)$のとき,最小値$[オカ] \sqrt{[キ]}$をとる.
東邦大学 私立 東邦大学 2015年 第12問
連立不等式$|x| \leqq 1$,$|y| \leqq 1$で表される領域を$x$軸および$y$軸のまわりに$1$回転してできる立体を,それぞれ$X,\ Y$とする.$X$と$Y$の共通部分の体積は$\displaystyle \frac{[クケ]}{[コ]}$である.
東邦大学 私立 東邦大学 2015年 第13問
$\mathrm{O}$を原点とする空間において,$3$点$\mathrm{P}(1,\ -2,\ 0)$,$\mathrm{Q}(0,\ -2,\ 2)$,$\mathrm{R}(2,\ 0,\ 2)$を通る平面を$\alpha$とする.また,平面$\alpha$上に,点$\mathrm{P}$を中心とし,線分$\mathrm{PR}$を半径とする円$C$がある.このとき,原点$\mathrm{O}$と平面$\alpha$との距離は$[サ]$であり,原点$\mathrm{O}$と円$C$の周上の点との距離の最大値は$[シ] \sqrt{[ス]}$である.
東邦大学 私立 東邦大学 2015年 第14問
定積分$\displaystyle \int_{-2}^2 \frac{x^2 \cdot 2^{-x}}{2^x+2^{-x}} \, dx$の値は,$\displaystyle \frac{[セ]}{[ソ]}$である.
東邦大学 私立 東邦大学 2015年 第15問
$k$を実数とする.$x$の$3$次方程式$x(x^2-4k+4)+k(k-2)^2=0$の解がすべて実数であるような$k$の値の範囲は$\displaystyle \frac{[タ]}{[チ]} \leqq k \leqq [ツ]$である.
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。