タグ「空欄補充」の検索結果

42ページ目:全1740問中411問~420問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
東邦大学 私立 東邦大学 2015年 第1問
放物線$y=x^2+6x+5$と直線$y=2x+k$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,線分$\mathrm{AB}$の長さが$2 \sqrt{2}$であるとき,定数$k$の値は$\displaystyle \frac{[ア]}{[イ]}$である.
東邦大学 私立 東邦大学 2015年 第2問
等差数列$\{a_n\}$が,$a_{15}+a_{23}=-240$,$a_{19}+a_{20}+a_{21}=-318$を満たしている.このとき,公差は$[ウエ]$であり,和$\displaystyle \sum_{k=1}^n a_k$は$n=[オカ]$のとき最小となる.
東邦大学 私立 東邦大学 2015年 第3問
${25}^{25}$の桁数は$[キク]$である.ただし,$\log_{10}2=0.301$とする.
東邦大学 私立 東邦大学 2015年 第4問
$n$を自然数とする.関数$f(x)$を$\displaystyle f(x)=\lim_{n \to \infty} \frac{a+x^2+x^{2n}-x^{2n+2}}{12+x^{2n}}$と定めるとき,$f(x)$が実数全体で連続となるような定数$a$の値は$[ケコ]$である.
東邦大学 私立 東邦大学 2015年 第5問
下の図のような$\angle \mathrm{B}$を直角とする直角三角形$\mathrm{ABC}$において,$\angle \mathrm{C}$の$3$等分線と辺$\mathrm{AB}$との$2$つの交点を$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{BC}=2$,$\displaystyle \mathrm{BD}=\frac{8}{3}$のとき,$\mathrm{AC}=[サ] \sqrt{[シ]}$である.
(図は省略)
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
東邦大学 私立 東邦大学 2015年 第7問
$e$を自然対数の底とする.関数$f(x)=(e^x)^{e^x}$は,$x=[オカ]$のとき極値をとる.
東邦大学 私立 東邦大学 2015年 第8問
$a,\ b$を実数とし,$i$を虚数単位とする.複素数$x=a+bi$が等式
\[ \left( 1-\frac{i}{2} \right)x-8+\frac{\sqrt{3}}{2}i=\left( \frac{\sqrt{3}}{2}-\frac{i}{2} \right)^{104} \]
を満たしているとき,$a=[キ]$,$b=[ク]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。