タグ「空欄補充」の検索結果

38ページ目:全1740問中371問~380問を表示)
埼玉工業大学 私立 埼玉工業大学 2015年 第3問
白玉$7$個,赤玉$3$個が入っている袋がある.

(1)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻す.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{\kakkofour{フ}{ヘ}{ホ}{マ}}{5000} \]
である.
(2)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻さない.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{[ミ]}{[ム][メ]} \]
である.
大阪歯科大学 私立 大阪歯科大学 2015年 第1問
次の各問の$[ ]$にあてはまる数を入れなさい.

(1)$2015$を素因数分解したとき,最も大きい因子は$[ア]$である.
(2)一般項が$a_{n+1}=2a_n+a_{n-1}$(ただし,$a_0=1$,$a_1=1$)で表される数列の第$5$項は$[イ]$である.
(3)$\cos 2x-3 \cos x-1=0 (0 \leqq x<\pi)$の解は$[ウ]$である.
(4)$\log_2 (x-2)=\log_4 (-2x+a)$が解を持つ最小の整数$a$は$[エ]$である.
上智大学 私立 上智大学 2015年 第3問
$t$を実数とする.座標平面上に,$2$点$\mathrm{A}(t,\ 0)$,$\mathrm{B}(0,\ 1-\sqrt{3}t)$と,原点を中心とする半径$1$の円$C$がある.点$\mathrm{P}$が円$C$上を動くときの$2$つのベクトル$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{BP}}$の内積の最大値を$M_t$とおき,$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=M_t$となる点$\mathrm{P}$を$\mathrm{P}_t$と表す.

(1)$\displaystyle t=\frac{1}{\sqrt{3}}$のとき,
\[ M_t=[ナ]+\frac{1}{\sqrt{[ニ]}} \]
であり,$\mathrm{P}_t$の座標は$\left( [ヌ],\ [ネ] \right)$である.
(2)実数$t$が$t \geqq 0$の範囲を動くとき,$M_t$は$\displaystyle t=\frac{\sqrt{[ノ]}}{[ハ]}$で最小値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.

(3)$\mathrm{P}_t$の座標を$(\cos \theta,\ \sin \theta)$(ただし,$0 \leqq \theta<2\pi$)と表す.実数$t$が$t \geqq 0$の範囲を動くとき,$\theta$は
\[ \frac{[ヘ]}{[ホ]}\pi<\theta \leqq \frac{[マ]}{[ミ]}\pi \]
の範囲を動く.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)座標平面において,$1$次関数$y=4x+2$が表す直線を$\ell$とし,$\ell$上に点$\mathrm{P}(1,\ 6)$をとる.また,$2$次関数$y=f(x)$が表す放物線を$C$とする.

(i) $C$が点$\mathrm{P}$で$\ell$と接し,かつ$C$が点$(0,\ 1)$を通るとき,
\[ f(x)=[ア]x^2+[イ]x+[ウ] \]
である.
(ii) $C$が点$\mathrm{P}$で$\ell$と接するとき,$C$の頂点は直線
\[ y=[エ]x+[オ] \]
上に存在する。 

(2)複素数$z$の虚部を$\mathrm{Im}(z)$で表すことにする.
$2$次方程式$x^2-4x+9=0$の異なる$2$つの解を$\alpha,\ \beta$とし,$x^2-2x+2=0$の異なる$2$つの解を$\alpha^\prime,\ \beta^\prime$とする.ただし,$\mathrm{Im}(\alpha)>\mathrm{Im}(\beta)$および$\mathrm{Im}(\alpha^\prime)>\mathrm{Im}(\beta^\prime)$とする.このとき,$2$数$\displaystyle \frac{\alpha}{\alpha^\prime},\ \frac{\beta}{\beta^\prime}$を解とする$2$次方程式の$1$つは,
\[ x^2+\left( [カ]+[キ] \sqrt{[ク]} \right)x+\frac{[ケ]}{[コ]}=0 \]
である.
星薬科大学 私立 星薬科大学 2015年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが続けて試合を行い,先に$3$勝したほうが優勝とする.各試合で$\mathrm{A}$,$\mathrm{B}$のそれぞれが勝つ確率が$\displaystyle \frac{1}{4}$,引き分ける確率が$\displaystyle \frac{1}{2}$であるとき,次の問に答えよ.

(1)$3$試合目で優勝が決まる確率は$\displaystyle \frac{[$1$]}{[$2$][$3$]}$である.
(2)$5$試合が終了した時点で,まだ優勝が決まらない確率は$\displaystyle \frac{[$4$][$5$][$6$]}{[$7$][$8$][$9$]}$である.
星薬科大学 私立 星薬科大学 2015年 第2問
原点,点$(2,\ 2)$および点$(1,\ \sqrt{3})$を通る円がある.次の問に答えよ.

(1)この円の中心の座標は$([$10$],\ [$11$])$,半径は$[$12$]$である.
(2)点$\mathrm{A}(5,\ 1)$を通り円に接する$2$本の接線を考え,それぞれの接点を$\mathrm{B}$,$\mathrm{C}$とすると,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[$13$] \sqrt{[$14$]}}{[$15$]}$である.
星薬科大学 私立 星薬科大学 2015年 第3問
次の問に答えよ.

(1)関数$f(x)=2 \log_2 (2-x)+\log_2 x$は$\displaystyle x=\frac{[$16$]}{[$17$]}$で最大値
\[ [$18$]-[$19$] \log_2 [$20$] \]
をとる.
(2)$\log_2 5=2.32$,$\log_2 11=3.46$,$m$と$n$を正の整数,$0<a<1$とするとき,
\[ \log_2 113=m \left( m-\frac{1}{2} \right)+n+a \]
と表すことができるような$(m,\ n)$の組合せは,$m$の値の小さいほうから順に,$([$21$],\ [$22$])$と$([$23$],\ [$24$])$である.
星薬科大学 私立 星薬科大学 2015年 第4問
$a>0$として,放物線$C:y=4x^2+2$,直線$\ell:y=ax-6$について次の問に答えよ.

(1)$C$が点$(2,\ 18)$で$\ell$と交わるとき,$a=[$25$][$26$]$となり,点$([$27$],\ [$28$])$でも交わる.
(2)$C$と$\ell$が接する場合$a=[$29$] \sqrt{[$30$]}$となり,接点の座標は
\[ (\sqrt{[$31$]},\ [$32$][$33$]) \]
となる.$C$,$\ell$と$y$軸で囲まれた領域の面積は$\displaystyle \frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
星薬科大学 私立 星薬科大学 2015年 第6問
$c_y \geqq 0$,$c_z \geqq 0$として,空間に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2 \sqrt{3})$,$\mathrm{C}(0,\ c_y,\ c_z)$,$\mathrm{D}(-2,\ d_y,\ d_z)$を頂点とする正四面体がある.次の問に答えよ.

(1)この正四面体$\mathrm{ABCD}$の一辺の長さは$[$51$]$であり,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[$52$]$である.
(2)点$\mathrm{C}$の座標において
\[ c_y=\frac{[$53$] \sqrt{[$54$]}}{[$55$]},\quad c_z=\frac{[$56$] \sqrt{[$57$]}}{[$58$]}, \]
点$\mathrm{D}$の座標において$d_y=[$59$]$,$d_z=[$60$]$である.
北海道薬科大学 私立 北海道薬科大学 2015年 第1問
次の各設問に答えよ.

(1)循環小数の差$3. \dot{7} 4 \dot{5}-3. \dot{4}4 \dot{9}$を分数で表すと$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)$\displaystyle \left( \frac{1}{2-\sqrt{3}} \right)^2$の小数部分は$x^2+[エオ]x+[カキク]=0$の解である.
(3)$\displaystyle \log_9 \frac{45}{7}+\log_3 \sqrt{10.5}+\log_9 3.6$を簡単にすると$\displaystyle \frac{[ケ]}{[コ]}$となる.
(4)${16}^x-3 \cdot 2^{2x+1}-16=0$を満たす$x$の値は$\displaystyle \frac{[サ]}{[シ]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。