タグ「空欄補充」の検索結果

35ページ目:全1740問中341問~350問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また$(1)$,$(3)$に答えなさい.

以下,数列$\{a_n\}$が「長さ有限」とは,ある番号から先のすべての$n$に対して$a_n=0$となることをいう.ただし,$a_n$はすべて実数とする.また,数列$\{a_n\}$を一つの文字で表すときは$A=\{a_n\}$あるいは$A=(a_1,\ a_2,\ \cdots)$のように書く.数列$A=\{a_n\}$が長さ有限のとき,$a_n \neq 0$となるような自然数$n$の最大値を数列$A$の「長さ」と呼ぶ.ただし,すべての$n$に対して$a_n=0$である数列の長さは$0$とする.
数列$A=\{a_n\}$,$B=\{b_n\}$,および実数$c$に対して
\[ A+B=\{a_n+b_n\},\quad cA=\{ca_n\} \]
により新しい数列$A+B$および$cA$を定義する.また,$A$,$B$がともに長さ有限のときに限って$A$と$B$との「内積」$A \cdot B$および「距離」$\overline{AB}$をそれぞれ
\[ A \cdot B=\sum_{n=1}^\infty a_nb_n,\quad \overline{AB}=\sqrt{\sum_{n=1}^\infty (a_n-b_n)^2} \]
により定める.$\displaystyle \left( \sum_{n=1}^\infty \text{は実際には有限個の数の和である.} \right)$
さて,
\[ A(0)=(0,\ 0,\ 0,\ \cdots),\quad A(1)=(1,\ 0,\ 0,\ \cdots) \]
であるとし,さらに$s=2,\ 3,\ \cdots$に対して長さ$s$の数列
\[ A(s)=(a(s)_1,\ a(s)_2,\ \cdots,\ a(s)_s,\ 0,\ 0,\ \cdots) \]
が定まっていて$a(s)_n>0 (n=1,\ 2,\ \cdots,\ s)$かつ
\[ \overline{A(s)A(t)}=1 \quad (s \neq t \text{かつ}s,\ t=0,\ 1,\ 2,\ \cdots) \]
が成り立っているとする.

(1)$s \geqq 1$ならば$A(s) \cdot A(s)=1$であり,また,$t>s \geqq 1$ならば$\displaystyle A(s) \cdot A(t)=\frac{1}{2}$であることを示しなさい.ただし,$A(s)=\{a_n\}$,$A(t)=\{b_n\}$とおきなさい.
(2)$A(2),\ A(3)$を求めると
$A(2)=\left( [あ],\ [い],\ 0,\ 0,\ \cdots \right)$,
$A(3)=\left( [う],\ [え],\ [お],\ 0,\ 0,\ \cdots \right)$
である.
(3)$t>s \geqq 2$ならば数列$A(t)$と数列$A(s)$の初めの$s-1$項はすべて一致することを示しなさい.ただし,数列$A(s)$の初めの$s$項を$a_1,\ a_2,\ \cdots,\ a_s$,数列$A(t)$の初めの$t$項を$b_1,\ b_2,\ \cdots,\ b_t$とおき,また,$s$と$t$以外のすべての$i \geqq 1$について数列$A(i)$の初めの$i$項を$c(i)_1,\ c(i)_2,\ \cdots,\ c(i)_i$とおきなさい.
(4)$t=1,\ 2,\ \cdots$に対して長さ$t$の数列$B(t)$を
\[ B(t)=\frac{1}{t+1} \left\{ A(1)+A(2)+\cdots +A(t) \right\}=\frac{1}{t+1} \sum_{i=1}^t A(i) \]
により定めると,$s=1,\ 2,\ \cdots,\ t$に対して$A(s) \cdot B(t)=[か]$である.
(5)$(3)$で示されたことから,$2$つの数列$\{x_n\}$,$\{y_n\}$が定まって,すべての$s \geqq 2$に対して$A(s)$は
\[ A(s)=(x_1,\ x_2,\ \cdots,\ x_{s-1},\ y_s,\ 0,\ 0,\ \cdots) \]
と表される.$\displaystyle \frac{y_s}{x_s}$を$s$の式で表すと$\displaystyle \frac{y_s}{x_s}=[き]$である.また,$x_s$を$s$の式で表すと$x_s=[く]$となる.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
中京大学 私立 中京大学 2015年 第1問
等差数列$\{a_n\}$の初項から第$6$項までの和が$42$,$a_{30}=3a_{10}$であるとき,$a_1=[ア]$であり,$a_{13}=[イウ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$n$を自然数とする.表と裏が$\displaystyle\frac{1}{2}$の確率で出現するコインを$n$回繰り返し投げる試行をおこなう.各試行に対して$n$個の数$X_1,\ \cdots,\ X_n$をつぎのように定義する.
\[ X_i=\left\{ \begin{array}{ll}
X_{i-1}+1 & (i \text{回目の結果が表の場合}) \\
X_{i-1}+2 & (i \text{回目の結果が裏の場合})
\end{array} \right. \]
ただし$X_0=0$とする.$X_1,\ X_2,\ \cdots,\ X_n$のいずれかが値$k (1 \leqq k \leqq 2n)$と等しくなる確率を$P(n,\ k)$と記す.例えば,$n=1$ならば$\displaystyle P(1,\ 1)=\frac{1}{2}$,$\displaystyle P(1,\ 2)=\frac{1}{2}$となる.$n=2$ならば$\displaystyle P(2,\ 1)=\frac{1}{2}$,$\displaystyle P(2,\ 4)=\frac{[$1$]}{[$2$]}$となる.

$3 \leqq k \leqq n$とする.$X_i=k$となるのは,$X_{i-1}=k-1$で$i$回目の結果が表となるか,あるいは$X_{i-1}=k-2$で$i$回目の結果が裏となるかのいずれかの場合である.したがって
\[ P(n,\ k)=\frac{[$3$]}{[$4$]}P(n,\ k-1)+\frac{[$5$]}{[$6$]}P(n,\ k-2) \quad (3 \leqq k \leqq n) \]
が成り立つ.
いまコインを$10$回投げる試行を考える.このとき
\[ P(10,\ 2)=\frac{[$7$]}{[$8$]},\quad P(10,\ 5)=\frac{[$9$][$10$]}{[$11$][$12$]} \]
である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \int_2^4 (x^2+ax+2) \, dx=\frac{14}{3}$を満たす$a$の値は$[ア]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,$\cos \theta+\sqrt{3} \sin \theta$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)実数$x$が$0<x<1$かつ${(\log_2 x)}^2+\log_2 x-6=0$を満たすとき,$x$の値は$[エ]$である.
(4)$3$次方程式$(x-1)(x^2+ax+a+2)=0$が$2$重解をもつとき,$a$の値をすべて求めると,$[オ]$である.
(5)実数$a,\ b$を用いて$\displaystyle \frac{1}{2+i}+\frac{1}{3+4i}=a+bi$と表すとき,$a=[カ]$であり,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$3$つのさいころを同時に投げるとき,ちょうど$2$つのさいころが同じ目になる確率は$[ク]$である.
(7)ベクトル$(2,\ a,\ b)$が$2$つのベクトル$(1,\ -1,\ 3)$,$(-2,\ 1,\ 1)$に垂直であるとき,$(a,\ b)=[ケ]$である.
(8)底辺の長さが$a$,高さが$b$の三角形が$2a+b=6$を満たすとき,三角形の面積の最大値は$[コ]$である.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)$3$次関数$y=4x^3-12x+1 (-1 \leqq x \leqq \sqrt{3})$のグラフを$G$とする.$k$を実数とし,直線$\ell:y=-3x+k$を考える.$\ell$と$G$が異なる$2$つの共有点をもつための必要十分条件は,
\[ k=[ア]+[イ] \sqrt{[ウ]} \]
または
\[ [エ]+[オ] \sqrt{[カ]}<k<[キ] \]
である.
(2)不等式$9^{\log_3 x}-3 \cdot 2^{(\log_2 x+2)}+3^3>0$の解は,$[ク]<x<[ケ]$または$[コ]<x$である.
(3)下図のような道がある.

(i) $\mathrm{C}$を経由して,$\mathrm{A}$から$\mathrm{B}$まで最短距離で行く道順は$[サ]$通りである.
(ii) $\mathrm{A}$から$\mathrm{B}$まで最短距離で行く道順は$[シ]$通りである.

(図は省略)
東洋大学 私立 東洋大学 2015年 第2問
実数$k$は$0<k<2$をみたし,$xy$平面上の曲線$C$を$y=-x^2+4 (x \geqq 0)$,直線$\ell$を$y=4-k^2$とする.次の各問に答えよ.

(1)$y$軸,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_1$とすると,$\displaystyle S_1=\frac{[ア]}{[イ]}k^{\mkakko{ウ}}$となる.
(2)直線$x=2$,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_2$とすると,
\[ S_2=\frac{[エ]}{[オ]}k^{\mkakko{カ}}-[キ]k^{\mkakko{ク}}+\frac{[ケ]}{[コ]} \]
となる.
(3)$2$つの面積の和$S=S_1+S_2$を考える.$S$の最小値は$[サ]$である.このとき$k=[シ]$である.
東洋大学 私立 東洋大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle \int_0^1 \frac{1}{x^2+1} \, dx=\frac{\pi}{[ア]}$である.
(2)$\displaystyle \frac{x^2+3x+7}{(x+2)(x^2+1)}=\frac{A}{x+2}+\frac{Bx+C}{x^2+1}$($A,\ B,\ C$は定数)とおくと,$A=[イ]$,$B=[ウ]$,$C=[エ]$である.
(3)$\displaystyle \int_0^1 \frac{x^2+3x+7}{x^3+2x^2+x+2} \, dx=\frac{[オ]}{4} \pi+\log \frac{3}{[カ]}$である.ただし,対数は自然対数とする.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。