タグ「空欄補充」の検索結果

34ページ目:全1740問中331問~340問を表示)
金沢工業大学 私立 金沢工業大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=7$,$\mathrm{BC}=5$,$\mathrm{AC}=8$とし,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.

(1)$\displaystyle \mathrm{BD}=\frac{[タ]}{[チ]}$である.

(2)$\displaystyle \mathrm{AD}=\frac{[ツ] \sqrt{[テ]}}{[ト]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の半径を$R_1$,$\triangle \mathrm{ABD}$の外接円の半径を$R_2$とすると,$\displaystyle \frac{R_2}{R_1}=\frac{\sqrt{[ナ]}}{[ニ]}$である.
金沢工業大学 私立 金沢工業大学 2015年 第4問
数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=1+8n+\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.

(1)$a_{n+1}=[ス]a_n+[セ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$a_n=[ソ] \cdot {[タ]}^{n-1}-[チ] (n=1,\ 2,\ 3,\ \cdots)$である.
(3)$\displaystyle \sum_{k=1}^n a_k=[ツ] \cdot {[テ]}^n-[ト]n-[ナ] (n=1,\ 2,\ 3,\ \cdots)$である.
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$のとき,方程式$\sin \theta-\sqrt{3} \cos \theta=0$を満たす$\theta$の値は$\displaystyle \theta=\frac{\pi}{[ア]}$,$\frac{[イ]}{[ウ]} \pi$である.
(2)$0 \leqq \theta<2\pi$のとき,不等式$\sin^2 \theta-3 \cos^2 \theta \geqq 0$を満たす$\theta$の値の範囲は$\displaystyle \frac{\pi}{[エ]} \leqq \theta \leqq \frac{[オ]}{[カ]} \pi$,$\displaystyle \frac{[キ]}{[ク]} \pi \leqq \theta \leqq \frac{[ケ]}{[コ]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$c$を定数とし,数列$\{a_n\}$を
\[ a_n=\frac{c+\sum_{k=1}^n 2^k}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+1}=[$1$]+\frac{a_n}{[$2$]} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.
(2)$a_n$を$n$の式で表すと
\[ a_n=2-\frac{[$3$]-c}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となる.ゆえに,$c=[$4$]$のとき数列$\{a_n\}$は公比$1$の等比数列になる.
(3)$c=1$とする.$a_n$が$1.99$を超えない最大の$n$は$[$5$]$である.
(4)$c=-38$とする.自然数$N$に対して,$\displaystyle \sum_{n=1}^N a_n$の値は$N=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$][$9$]}{[$10$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
硬貨を$1$枚投げて表が出れば$\mathrm{A}$に$1$点,裏が出れば$\mathrm{B}$に$1$点を与えることを繰り返す.硬貨を$5$回投げ終わった時点で$\mathrm{A}$の得点は$3$点,$\mathrm{B}$の得点は$2$点であった.なお,硬貨は表裏が等しい確率で出るものとする.

(1)$6$回目以降,$\mathrm{A}$,$\mathrm{B}$のどちらかが$5$点を取るまでの各回の得点の与え方を樹形図で表すと,その場合の数は$[$11$][$12$]$通りであることがわかる.そして,$\mathrm{A}$が$\mathrm{B}$より先に$5$点を取る確率は$\displaystyle \frac{[$13$][$14$]}{[$15$][$16$]}$である.
(2)$6$回目以降の各回の得点の与え方を次のように変更する.$\mathrm{A}$は$1,\ 3,\ 5$と書かれたカードがそれぞれ$1$枚ずつ入った袋から,$\mathrm{B}$は$2,\ 4$と書かれたカードが$1$枚ずつ入った袋から,中を見ずに$1$枚取り出し,大きい数字の書かれたカードを取り出した方に$1$点を与える.このとき,各回ごとに$\mathrm{A}$が得点する確率は$\displaystyle \frac{[$17$]}{[$18$]}$であり,$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$19$][$20$]}{[$21$][$22$]}$である.
(3)$6$回目以降について,$\mathrm{A}$の袋は$(2)$と同じとし,$\mathrm{B}$の袋には$6$と書かれたカードを$1$枚追加して,$(2)$と同様に各回の得点の与え方を定める.このとき$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$23$][$24$]}{[$25$][$26$]}$である.
金沢工業大学 私立 金沢工業大学 2015年 第6問
関数$y=3 \cdot 4^x-3 \cdot 2^{x+1}+8 (0 \leqq x \leqq 2)$について,$2^x=t$とする.

(1)$t$のとりうる値の範囲は$[サ] \leqq t \leqq [シ]$である.
(2)$y=[ス]t^2-[セ]t+[ソ] ([サ] \leqq t \leqq [シ])$である.
(3)$y$は$t=[タ]$のとき,すなわち,$x=[チ]$のとき,最大値$[ツテ]$をとり,$t=[ト]$のとき,すなわち,$x=[ナ]$のとき,最小値$[ニ]$をとる.
金沢工業大学 私立 金沢工業大学 2015年 第1問
関数$f(x)=\sqrt{7x-3}-1$について考える.

(1)$f(x)$の逆関数は$\displaystyle f^{-1}(x)=\frac{[ア]}{[イ]}(x^2+[ウ]x+[エ]) (x \geqq [オカ])$である.
(2)曲線$y=f(x)$と直線$y=x$との交点の座標は$([キ],\ [ク])$,$([ケ],\ [コ])$である.ただし,$[キ]<[ケ]$とする.
(3)不等式$f^{-1}(x) \leqq f(x)$の解は$[サ] \leqq x \leqq [シ]$である.
金沢工業大学 私立 金沢工業大学 2015年 第2問
次の問いに答えよ.

(1)実数$x$について,等式
\[ \sin x-\sqrt{3} \cos x=[ス] \sin \left( x-\frac{\pi}{[セ]} \right) \]
が成り立つ.
(2)$0 \leqq x<2\pi$を満たす実数$x$について,無限等比級数
\[ 1+(\sin x-\sqrt{3} \cos x)+{(\sin x-\sqrt{3} \cos x)}^2+{(\sin x-\sqrt{3} \cos x)}^3+\cdots \]
は$\displaystyle \frac{\pi}{[ソ]}<x<\frac{\pi}{[タ]},\ \frac{[チ]}{[ツ]} \pi<x<\frac{[テ]}{[ト]} \pi$で収束し,その和は
\[ \frac{1}{1-[ナ] \sin \left( x-\displaystyle\frac{\pi}{[ニ]} \right)} \]
である.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
実数$\theta$は$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たすとする.$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標空間の$3$点
\[ \mathrm{A}(\cos^2 \theta,\ \sin \theta,\ 1+\sin^2 \theta),\quad \mathrm{B}(\sin \theta,\ 0,\ -\sin \theta),\quad \mathrm{C}(1,\ \cos 2\theta-\cos^2 \theta,\ 1) \]
に対し,それぞれ$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.

(1)$\overrightarrow{b}$は零ベクトルではないとする.$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にあるならば,

$\displaystyle \theta=\frac{[$27$][$28$]}{[$29$]} \pi$である.

次に$\displaystyle \theta=\frac{\pi}{6}$とし,以下このときの$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を考える.また,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.
(2)点$\mathrm{P}$は$\alpha$上の点で,$|\overrightarrow{\mathrm{AP}}|$が最小になるものとする.このとき,
\[ \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{b}=[$30$],\quad \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{c}=[$31$] \]
が成り立つ.また,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{[$32$][$33$]}{[$34$]} \overrightarrow{b}+\frac{[$35$][$36$]}{[$37$][$38$]} \overrightarrow{c} \]
となる.ただし,$\overrightarrow{u},\ \overrightarrow{v}$はベクトル$\overrightarrow{u}$と$\overrightarrow{v}$の内積を表す.

(3)三角形$\mathrm{OBC}$の面積は$\displaystyle \frac{1}{8} \sqrt{\frac{[$39$][$40$]}{[$41$]}}$であり,$|\overrightarrow{\mathrm{AP}}|=\displaystyle \sqrt{\frac{[$42$]}{[$43$][$44$]}}$なので,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{[$45$]}{[$46$]}$となる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。