タグ「空欄補充」の検索結果

29ページ目:全1740問中281問~290問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$3$次関数$f(x)$は$x=0$で極小,$x=a>0$で極大になるとする.また$x=b (\neq a)$で$f(a)=f(b)$が成り立つとする.$x=b$における$y=f(x)$の接線が$y$軸と交わる点を$(0,\ c)$とおく.もし$3$点$(a,\ f(a))$,$(b,\ f(b))$,$(0,\ c)$を$3$頂点とする三角形が二等辺三角形になるならば,接線の傾きは
\[ -2 \sqrt{[$27$][$28$]} \quad\text{または}\quad -\sqrt{[$29$][$30$]} \]
であり,それぞれに対応して,$c$の値は
\[ c-f(a)=-\sqrt{[$31$][$32$]}a \quad\text{または}\quad -\frac{\sqrt{[$33$]}}{[$34$]}a \]
をみたす.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)座標平面上の放物線
\[ y={(x-29)}^2-3600 \]
と$x$軸の共有点の$x$座標は$[ア]$と$[イ]$である.ただし$[ア]<[イ]$とする.
(2)$x+y=1$かつ$0<x<1$を満たす実数$x,\ y$に対して
\[ A=\frac{1}{x}+\frac{1}{y},\quad B=\left( 1+\frac{1}{x^2} \right) \left( 1+\frac{1}{y^2} \right) \]
とおく.

(i) $A$のとり得る値の最小値は$[ウ]$である.
(ii) すべての$x,\ y$に対して
\[ B=[エ]A^2+[オ]A+[カ] \]
が成り立つ.
(iii) $B$のとり得る値の最小値は$[キ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
数列$\{a_n\}$を初項$5 \log_2 3$,公差$\displaystyle -\frac{1}{2} \log_2 3-\frac{1}{2}$の等差数列とする.このとき,

(1)$\displaystyle a_{10}=\frac{[ア]}{[イ]} \log_2 3-\frac{[ウ]}{[エ]},\quad a_{11}=-[オ]$
である.
(2)数列$\{b_n\}$を
\[ b_n=2^{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定めると,これは初項$[カ][キ][ク]$,公比$\displaystyle \frac{\sqrt{[ケ]}}{[コ]}$の等比数列となる.
(3)数列$\{a_n\}$はある$n$より先は負となる.$a_n$が負となる最初の$n$は$[サ]$である.
東京理科大学 私立 東京理科大学 2015年 第2問
原点を$\mathrm{O}$とする座標空間内に$2$点$\mathrm{A}(3,\ -2,\ 1)$,$\mathrm{B}(1,\ 2,\ 5)$を定め,$t$を実数として,$z$軸上を動く点$\mathrm{P}(0,\ 0,\ t)$をとる.

(1)線分$\mathrm{AB}$の長さは$[ア]$である.
(2)線分$\mathrm{AP}$の長さと線分$\mathrm{BP}$の長さが等しくなるのは$t=[イ]$のときである.
(3)$\angle \mathrm{APB}$が直角となるのは$t=[ウ] \pm \sqrt{[エ]}$のときである.

(4)$\triangle \mathrm{ABP}$の面積が最小となるのは$\displaystyle t=\frac{[オ][カ]}{[キ]}$のときである.
東京理科大学 私立 東京理科大学 2015年 第1問
$a,\ b$を実数として,$3$次関数$f(x)=x^3-ax^2+3bx-10$は$x=1$で極値をとるとする.

(1)$\displaystyle a=\frac{[ア]}{[イ]}b+\frac{[ウ]}{[エ]}$であり,$b \neq [オ]$である.

(2)$3$次方程式$x^3-ax^2+3bx-10=0$が異なる$3$つの実数解をもつのは
\[ b<-[カ],\quad [キ]<b \]
のとき,すなわち
\[ a<-\frac{[ク]}{[ケ]},\quad [コ][サ]<a \]
のときである.
東京理科大学 私立 東京理科大学 2015年 第2問
$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CD}=6$,$\mathrm{DA}=5$である四角形$\mathrm{ABCD}$があり,この四角形は円$\mathrm{O}$に内接している.

(1)$\displaystyle \cos \angle \mathrm{B}=-\frac{[ア]}{[イ]}$であり,$\mathrm{AC}=\sqrt{[ウ][エ]}$である.

(2)円$\mathrm{O}$の半径は$\displaystyle \frac{[オ]}{[カ][キ]} \sqrt{[ク][ケ][コ]}$である.

(3)四角形$\mathrm{ABCD}$の面積は$[サ] \sqrt{[シ]}$である.

(4)四角形$\mathrm{ABCD}$は,ある円に外接している.この円の半径は$\displaystyle \frac{[ス]}{[セ]} \sqrt{[ソ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
放物線$C:y=ax^2-bx-c$は,点$\displaystyle \left( -\frac{1}{2},\ -1 \right)$を通り,この点における$C$の接線の傾きは$-14$であり,その軸は$\displaystyle x=\frac{1}{2}$であるという.このとき,
\[ a=[ア],\quad b=[イ],\quad c=\frac{[ウ][エ]}{[オ]} \]
である.$C$と$y$軸との交点における$C$の接線を$\ell$とすると,$\ell$の方程式は
\[ y=-[カ]x-\frac{[キ][ク]}{[ケ]} \]
となり,原点を通り$\ell$に平行な直線と$C$で囲まれる部分の面積は
\[ \frac{[コ][サ][シ]}{[ス][セ]} \sqrt{[ソ]} \]
となる.
東京理科大学 私立 東京理科大学 2015年 第4問
関数$\displaystyle f(x)=\frac{2^x-2^{-x}}{2}$について考える.

(1)$\displaystyle f \left( \log_{\frac{1}{2}} 5 \right)=\frac{[ア][イ]}{[ウ]}$
(2)$\displaystyle f(a)=\frac{4}{3}$をみたす$a$に対して,$2^a=[エ]$
(3)$\displaystyle f(b)=\frac{15}{8}$をみたす$b$に対して,$\displaystyle f(b+\log_2 3)=\frac{[オ][カ][キ]}{[ク][ケ]}$
東京理科大学 私立 東京理科大学 2015年 第5問
次の問いに答えよ.

(1)$\alpha$を実数として,$\sin \alpha$が$8{(\sin \alpha)}^3-6 \sin \alpha-1=0$をみたすとき,
\[ \sin (3 \alpha)=-\frac{[ア]}{[イ]} \]
となる.
(2)$3$次方程式$8x^3-6x-1=0$の異なる$3$つの解は
\[ \sin \left( \frac{[ウ]}{[エ][オ]}\pi \right),\quad \sin \left( \frac{[カ][キ]}{[エ][オ]}\pi \right),\quad \sin \left( \frac{[ク][ケ]}{[エ][オ]}\pi \right) \]
である.ただし,$\displaystyle 0 \leqq \frac{[ウ]}{[エ][オ]}<\frac{[カ][キ]}{[エ][オ]}<\frac{[ク][ケ]}{[エ][オ]} \leqq \frac{5}{3}$とする.
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$x+y+z+w=18$,$x \geqq 8$,$y \geqq 4$,$z \geqq 2$,$w \geqq 0$を満たす整数$x,\ y,\ z,\ w$の組$(x,\ y,\ z,\ w)$の個数は$[ア]$個である.
(2)$4$個の白球と$6$個の赤球を無作為に並べて,輪をつくる.このとき,白球が隣り合わない確率は$\displaystyle \frac{[イ]}{[ウ]}$であり,$4$個の白球がすべて隣り合う確率は$\displaystyle \frac{[エ]}{[オ]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。