タグ「空欄補充」の検索結果

162ページ目:全1740問中1611問~1620問を表示)
早稲田大学 私立 早稲田大学 2011年 第6問
$A=\left( \begin{array}{cc}
1 & 2 \\
3 & 6
\end{array} \right)$とする.点$(x,\ y)$が$xy$平面上を動くとき,行列$A$による変換$\left( \begin{array}{c}
X \\
Y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)$で移される点$(X,\ Y)$は$XY$平面上の直線$\ell:Y=[ト]X$上を動く.

次に,行列$G=\left( \begin{array}{cc}
a & b \\
b & a
\end{array} \right)$が$AGA=A$を満たすとする.点$(X,\ Y)$が$\ell$上を動くとき,その各点で列ベクトル$G \left( \begin{array}{c}
X \\
Y
\end{array} \right)$が定まる.このとき,列ベクトル$G \left( \begin{array}{c}
X \\
Y
\end{array} \right)$の大きさは$X$の値により変化するが,いずれの場合においても$\displaystyle a=\frac{[ナ]}{[ニ]}$,$\displaystyle b=\frac{[ヌ]}{[ネ]}$のとき最小となる.ただし,$[ニ]$,$[ネ]$はできるだけ小さな自然数で答えること.
玉川大学 私立 玉川大学 2011年 第1問
次の$[ ]$を埋めよ.

(1)$1,\ 2,\ 3,\ 4,\ 5$の中から異なる$3$つの数字を使って作られる$3$桁の整数の中で,$345$より大きなものは$[ ]$個である.また,$0,\ 1,\ 2,\ 3,\ 4,\ 5$の中から異なる$4$つの数字を使って作られる$4$桁の整数は,全部で$[ ]$個である.
(2)$2$つのベクトル$\overrightarrow{\mathrm{OA}}=(1,\ 2)$,$\overrightarrow{\mathrm{OB}}=(-1,\ 5)$のなす角を$\theta (0 \leqq \theta \leqq \pi)$とすると,$\displaystyle \cos \theta=\frac{[ ]}{\sqrt{[ ]}}$である.また,$\displaystyle \sin \theta=\frac{[ ]}{\sqrt{[ ]}}$である.したがって,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$で作られる平行四辺形の面積は$[ ]$である.
(3)$n \leqq \log_{10}2^{40}<n+1$を満たす整数は$n=[ ]$であるから,$2^{40}$は$[ ]$桁の整数である.$\log_{10}2$の値として$0.3010$を用いてよい.
(4)方程式$x^2=3+\sqrt{3+x}$の解は$x=[ ]$,$\displaystyle \frac{[ ]+\sqrt{[ ]}}{[ ]}$である.
愛知学院大学 私立 愛知学院大学 2011年 第1問
次の空欄を埋めなさい.

(1)$(a+b)^6$の展開式における$a^3b^3$の項の係数は$[ア]$となる.
(2)$(a-2b)^7$の展開式における$a^4b^3$の項の係数は$[イ]$となる.
(3)$(a+b+c)^8$の展開式における$a^3b^2c^3$の項の係数は$[ウ]$となる.
愛知学院大学 私立 愛知学院大学 2011年 第1問
$f(x)=\sqrt{(x-6)^2(-x-1)^2}+\sqrt{(x-2)^2(x-3)^2}$とする.次の条件のとき,$f(x)$を簡単にしなさい.

(1)$6<x$のとき,$f(x)=[ア]$
(2)$3<x \leqq 6$のとき,$f(x)=[イ]$
(3)$2<x \leqq 3$のとき,$f(x)=[ウ]$
(4)$-1<x \leqq 2$のとき,$f(x)=[エ]$
(5)$x \leqq -1$のとき,$f(x)=[オ]$
愛知学院大学 私立 愛知学院大学 2011年 第1問
次の積分
\[ \int_{-1}^1 x^2(x^3+ax+b)^2 \, dx \]
を最小にする$a$の値は$\displaystyle \frac{[アイ]}{[ウ]}$で,$b$の値は$[エ]$である.
愛知学院大学 私立 愛知学院大学 2011年 第2問
$3$つの実数$x,\ y,\ z (x<y<z)$において,$x+y+z=22$,$x^2+y^2+z^2=174$,$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{31}{70}$である.これらの実数$x,\ y,\ z$を求めると
\[ x=[ア],\quad y=[イ],\quad z=[ウエ] \]
である.
愛知学院大学 私立 愛知学院大学 2011年 第4問
三角形$\mathrm{ABC}$で$\angle \mathrm{B}={45}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{BC}=10$のとき,
\[ \sin A=\frac{\sqrt{2}+\sqrt{[ア]}}{[イ]} \]
で,$\mathrm{AB}$の長さは$[ウエ] \sqrt{[オ]}-[カ] \sqrt{[キ]}$,

$\mathrm{AC}$の長さは$[クケ] \sqrt{[コ]}-[サシ]$である.
吉備国際大学 私立 吉備国際大学 2011年 第1問
次の$[ ]$を埋めよ.

(1)放物線$y=-2x^2+7x+6$の頂点は$[ア]$,軸は$[イ]$である.
(2)$\displaystyle \cos \theta=-\frac{5}{13}$のとき,$\sin \theta=[ウ]$である.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(3)$10$人を$7$人と$3$人に分ける仕方は,$[エ]$通りある.
(4)$1$から$1000$までの番号をつけた$1000$枚のカードから$1$枚をとりだすとき,その番号が$14$または$21$の倍数である確率は$[オ]$である.
会津大学 公立 会津大学 2011年 第1問
$(1)$,$(2)$の問いに答えよ.また,$(3)$から$(5)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int x \sin x^2 \, dx=[イ]$
(ii) $\displaystyle \int_0^2 xe^x \, dx=[ロ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{3^n+4^n}{3^{n+1}+4^{n+1}}=[ハ] \]
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$3 \sin x+\cos 2x+1=0$のとき,$x=[ニ]$である.
(4)$A=\left( \begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$のとき,$(A+B)(A-B)=[ホ]$である.
(5)Oを原点とする座標空間に2点A$(1,\ 2,\ 1)$,B$(2,\ 2,\ 0)$をとる.このとき,$\cos \angle \text{AOB}=[ヘ]$,$\triangle$AOBの面積は[ト]である.
宮城大学 公立 宮城大学 2011年 第1問
次の空欄$[ア]$から$[ケ]$にあてはまる数や式を書きなさい.

(1)自然数$n$に対し$n!$で$n$の階乗$1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$を表し,$2$を底とする対数関数を$\log_2 (x)$とする.このとき,
\[ \log_2(1!)-\log_2(2!)+\log_2(3!)-\log_2(4!)=[ア] \]
となる.
(2)三角形$\mathrm{ABC}$において$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,辺$\mathrm{BC}$の長さを$a$,辺$\mathrm{CA}$の長さを$b$,辺$\mathrm{AB}$の長さを$c$,三角形$\mathrm{ABC}$の面積を$S$とおく.$S$を$b,\ c$と$\mathrm{A}$を使って表すと,
\[ S=\frac{1}{2}bc [イ] \]
となる.また,$a,\ b,\ c,\ \mathrm{A},\ \mathrm{B},\ \mathrm{C}$の間には
\[ b=a \frac{[ウ]}{\sin \mathrm{A}},\quad c=a \frac{[エ]}{\sin \mathrm{A}} \]
という関係がある.よって,$S$を$a,\ \mathrm{A},\ \mathrm{B},\ \mathrm{C}$で表すと,
\[ S=\frac{1}{2}a^2 [オ] \]
となる.とくに,$\mathrm{B}=30^\circ$,$\mathrm{C}=45^\circ$,$a=1$のときには,
\[ \sin \mathrm{B}=[カ],\quad \sin \mathrm{C}=[キ] \]
また,
\[ \sin \mathrm{A}=[ク] \]
だから,
\[ S=\frac{-1+[ケ]}{4} \]
となる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。