タグ「空欄補充」の検索結果

152ページ目:全1740問中1511問~1520問を表示)
上智大学 私立 上智大学 2011年 第4問
実数$x$に対し,$x$を超えない最大の整数を$[x]$で表す.

自然数$n=1,\ 2,\ 3,\ \cdots$に対して,$n$が$[\sqrt{n}]$の整数倍で表せるとき,そのような$n$を小さいものから順に並べて
\[ n_1,\ n_2,\ n_3,\ \cdots \]
とする.

(1)$n_5=[マ]$である.
(2)自然数$p$に対して,$[\sqrt{n}]=p$をみたす自然数$n$の集合を$M_p$とする.$M_p$の要素で$p$の整数倍であるものは全部で$[ミ]$個ある.
(3)自然数$m$に対して,
\[ S_m=\sum_{i=1}^m n_i \]
とおく.$k \geqq 1$のとき,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$はいずれも$k$の多項式で,それぞれの$k$の$1$次の項の係数は$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$の順に$[ム]$,$[メ]$,$[モ]$である.また,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$は共通の因数$\displaystyle \left( k+[ヤ] \right)$をもつ.

(4)$\displaystyle \lim_{m \to \infty} \frac{\sqrt[3]{S_m}}{m}=\frac{[ユ]}{[ヨ]}$である.
上智大学 私立 上智大学 2011年 第3問
$M$を$2$以上の整数とし,$0$から$M-1$までの各整数を書いたカードが$1$枚ずつ合計$M$枚,箱の中に入っているものとする.この箱の中から$1$枚のカードを取り出し,カードに書かれている数を調べて箱に戻す試行を考える.

この試行を$n$回行ったとき,箱から取り出した$n$枚のカードに書かれている数の和が偶数である確率を$P_n$で表す.

(1)$M=2$のとき,$\displaystyle P_n=\frac{[ネ]}{[ノ]}$である.
(2)$M=3$のとき,
\[ P_1=\frac{[ハ]}{[ヒ]},\quad P_2=\frac{[フ]}{[ヘ]} \]
である.また,
\[ P_n=\frac{[ホ]}{[マ]} \left( \frac{[ミ]}{[ム]} \right)^n+\frac{[メ]}{[モ]} \]
である.
(3)$M$が偶数のとき,
\[ P_n=\frac{[ヤ]}{[ユ]} \]
である.また$M$が奇数のとき,
\[ P_n=\frac{[ヨ]}{[ラ]} \left( \frac{1}{M} \right)^n+\frac{[リ]}{[ル]} \]
である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$x>1$とする.
\[ \sqrt{\log_2 x}>\log_2 \sqrt{x} \]
を満たす$x$の値の範囲は$[ア]<x<[イ]$である.
(2)$x$の関数
\[ y=\sqrt{2} (\sin x-\cos x)-\sin x \cos x+1 \quad \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を考える.

(i) $t=\sin x-\cos x$とおくと,
\[ y=\frac{[ウ]}{[エ]}t^2+\sqrt{[オ]}t+\frac{[カ]}{[キ]} \]
が成り立つ.
(ii) $\displaystyle x=\frac{[ク]}{[ケ]} \pi$で$y$は最大値$[コ]+\sqrt{[サ]}$をとり,$\displaystyle x=\frac{[シ]}{[ス]} \pi$で$y$は最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
上智大学 私立 上智大学 2011年 第3問
正$n$角形の頂点から同時に$3$点を選び,それらを頂点とする三角形を作る.ただし,どの$3$点が選ばれるかは同様に確からしいとする.

(1)$n=6$のとき,三角形が直角三角形となる確率は$\displaystyle \frac{[マ]}{[ミ]}$である.
(2)$n=8$のとき,三角形が鈍角三角形となる確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)$n$が偶数のとき,三角形が直角三角形となる確率は
\[ \frac{[モ]}{n+[ヤ]} \]
であり,三角形が鈍角三角形となる確率は
\[ \frac{[ユ]}{[ヨ]} \left( \frac{n+[ラ]}{n+[リ]} \right) \]
である.
(4)$n$が$6$の倍数のとき,三角形が正三角形以外の二等辺三角形となる確率は
\[ \frac{[ル](n+[レ])}{(n+[ロ])(n+[ワ])} \]
である.ただし,$[ロ]>[ワ]$とする.
北海道文教大学 私立 北海道文教大学 2011年 第2問
次の$[$1$]$,$[$2$]$に当てはまるものを下の(ア)~(エ)のうちからそれぞれ一つ選びなさい.

(1)$x^2+x-2=0$は$x=-2$であるための$[$1$]$である.
(2)$\triangle \mathrm{ABC}$が正三角形であることは,$\triangle \mathrm{ABC}$が二等辺三角形であることの$[$2$]$である.

(ア) 必要条件であるが,十分条件でない.
(イ) 十分条件であるが,必要条件でない.
(ウ) 必要十分条件である.
(エ) どちらでもない.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
関西大学 私立 関西大学 2011年 第2問
$a,\ b$を実数の定数とし,$3$つの行列
\[ A=\left( \begin{array}{rr}
3 & -2 \\
a & 1
\end{array} \right),\quad R=\frac{1}{2} \left( \begin{array}{rr}
5 & -4 \\
6 & -5
\end{array} \right),\quad Q=\left( \begin{array}{cc}
\displaystyle \frac{1}{2} & 0 \\
0 & b
\end{array} \right) \]
は$AR=QA$を満たしている.次の$[ ]$をうめよ.

$AR=QA$を満たす$a$の値は$2$つある.そのうち,$A$が逆行列をもたないのは,$a=[$①$]$のときであり,このとき,$b=[$②$]$である.$A$が逆行列$A^{-1}$をもつのは,$a=[$③$]$のときであり,このとき,$A^{-1}=[$④$]$,$b=[$⑤$]$である.
$n$を$2$以上の自然数として,
\[ S_n=A+AR+AR^2+\cdots +AR^{n-1} \]
とおく.$AR=QA$であるから,$S_n$は実数$x_n,\ y_n$を用いて
\[ S_n=\left( \begin{array}{cc}
x_n & 0 \\
0 & y_n
\end{array} \right) A \]
と表される.
$a=[$③$]$のときは,$x_n=[$⑥$]$,$y_n=[$④chi$]$である.したがって,$E$を単位行列として,
\[ E+R+R^2+\cdots +R^{n-1}=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right) \]
とおくと,$\displaystyle \lim_{n \to \infty}p_n=[$\maruhachi$]$である.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)不等式$|4x-3| \leqq -x+7$を解くと$[$(\mathrm{a])$}$である.
(2)$2$つのベクトル$\overrightarrow{a}=(3,\ 4)$,$\overrightarrow{b}=(-1,\ 2)$に対して,$\overrightarrow{a}+k \overrightarrow{b}$と$\overrightarrow{a}-k \overrightarrow{b}$が垂直であるとき,正の定数$k$の値は$[$(\mathrm{b])$}$である.
(3)数列
\[ \frac{1}{\sqrt{1}+\sqrt{3}},\ \frac{1}{\sqrt{3}+\sqrt{5}},\ \frac{1}{\sqrt{5}+\sqrt{7}},\ \cdots,\ \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}},\ \cdots \]
の第$24$項までの和は$[$(\mathrm{c])$}$である.
(4)方程式$\log_2x=2 \log_x2-1$を解くと,$x=[$(\mathrm{d])$}$である.ただし,$x \neq 2$とする.
(5)$1$個のさいころを$2$回投げるとき,$1$回目に出る目の数と$2$回目に出る目の数のうち小さくない方を$X$とする.$X=4$となる確率は$[$(\mathrm{e])$}$である.
(6)関数$f(x)=x^2-x^3$は$x=[$(\mathrm{f])$}$で極大値$[$(\mathrm{g])$}$をとる.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。